Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites

This is the first targeted review of the synthesis – microstructure – electrochemical performance relations of MoS2 – based anodes and cathodes for secondary lithium ion batteries (LIBs). Molybdenum disulfide is a highly promising material for LIBs that compensates for its intermediate insertion voltage (∼2 V vs. Li/Li+) with a high reversible capacity (up to 1290 mA h g−1) and an excellent rate capability (e.g. 554 mA h g−1 after 20 cycles at 50 C). Several themes emerge when surveying the scientific literature on the subject: first, we argue that there is excellent data to show that truly nanoscale structures, which often contain a nanodispersed carbon phase, consistently possess superior charge storage capacity and cycling performance. We provide several hypotheses regarding why the measured capacities in such architectures are well above the theoretical predictions of the known MoS2 intercalation and conversion reactions. Second, we highlight the growing microstructural and electrochemical evidence that the layered MoS2 structure does not survive past the initial lithiation cycle, and that subsequently the electrochemically active material is actually elemental sulfur. Third, we show that certain synthesis techniques are consistently demonstrated to be the most promising for battery applications, and describe these in detail. Fourth, we present our selection of synthesis methods that we believe to have a high potential for creating improved MoS2 LIB electrodes, but are yet to be tried.

[1]  Zaiping Guo,et al.  Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. , 2010, Chemical communications.

[2]  M. Kanatzidis,et al.  Exfoliated and Restacked MoS2 and WS2: Ionic or Neutral Species? Encapsulation and Ordering of Hard Electropositive Cations , 1999 .

[3]  M. Deepa,et al.  MoO2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode. , 2013, ACS applied materials & interfaces.

[4]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[5]  R. Traill A rhombohedral polytype of molybdenite , 1963 .

[6]  Jun Jiang,et al.  Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. , 2013, Chemical Society reviews.

[7]  Yong‐Sheng Hu,et al.  Lithium storage in nitrogen-rich mesoporous carbon materials , 2012 .

[8]  Zhen Zhou,et al.  Enhanced Li Adsorption and Diffusion on MoS2 Zigzag Nanoribbons by Edge Effects: A Computational Study. , 2012, The journal of physical chemistry letters.

[9]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[10]  J. Penner‐Hahn,et al.  Structural characterization and thermal stability of MoS2 intercalation compounds , 1998 .

[11]  M. Lu,et al.  Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage , 2012 .

[12]  Yi Cui,et al.  Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. , 2010, ACS nano.

[13]  W. Jaegermann,et al.  Origin of the electrochemical potential in intercalation electrodes: Experimental estimation of the electronic and ionic contributions for Na intercalated into TiS2 , 2004 .

[14]  S Gemming,et al.  Structure and stability of molybdenum sulfide fullerenes. , 2006, The journal of physical chemistry. B.

[15]  Wei Huang,et al.  Preparation of MoS₂-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. , 2012, Small.

[16]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[17]  Jeng-Yu Lin,et al.  Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells , 2012 .

[18]  L. Archer,et al.  Ionic Liquid‐Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium‐Metal Batteries , 2012, Advanced materials.

[19]  Doron Aurbach,et al.  Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries , 2011, Advanced materials.

[20]  Arumugam Manthiram,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2008 .

[21]  L. Bendersky,et al.  Magnesium and magnesium-silicide coated silicon nanowire composite anodes for lithium-ion batteries , 2013 .

[22]  Emanuel Peled,et al.  Electrochemistry of a nonaqueous lithium/sulfur cell , 1983 .

[23]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[24]  V. P. Babenko,et al.  Structure and Thiophene Hydrodesulfurization Activity of MoS2/Al2O3 Catalysts , 2003 .

[25]  P. Balaya Size effects and nanostructured materials for energy applications , 2008 .

[26]  Yi Xie,et al.  Design of nanoarchitectured electrode materials applied in new-generation rechargeable lithium ion batteries. , 2007, Dalton transactions.

[27]  S. C. Moss,et al.  Anisotropic mean-square displacements (MSD) in single-crystals of 2H- and 3R-MoS2 , 1983 .

[28]  J. Ding,et al.  Magnetic molybdenum disulfide nanosheet films. , 2007, Nano letters.

[29]  Esther S. Takeuchi,et al.  Carbon nanotube substrate electrodes for lightweight, long-life rechargeable batteries , 2011 .

[30]  C. Jones,et al.  Lithium electrochemical cells at low voltage: decomposition of Mo and W dichalcogenides , 1987 .

[31]  Li-Jun Wan,et al.  Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. , 2012, Chemical communications.

[32]  Yuliang Cao,et al.  Temperature-sensitive cathode materials for safer lithium-ion batteries , 2011 .

[33]  N. Moncoffre,et al.  NATURE OF SUPER-LUBRICATING MOS2 PHYSICAL VAPOR DEPOSITION COATINGS , 1994 .

[34]  J. Tarascon,et al.  Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO toward Lithium , 2004 .

[35]  Palani Balaya,et al.  Fully Reversible Homogeneous and Heterogeneous Li Storage in RuO2 with High Capacity , 2003 .

[36]  J. Bae,et al.  3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. , 2012, Nanoscale.

[37]  Yong‐Sheng Hu,et al.  Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. , 2012, Chemistry, an Asian journal.

[38]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[39]  R. Prins,et al.  Electron diffraction study of intercalation compounds derived from 1T-MoS2 , 1999 .

[40]  J. Wilson,et al.  Effects of pressure and temperature on exciton absorption and band structure of layer crystals: Molybdenum disulphide , 1968 .

[41]  Deren Yang,et al.  Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries. , 2011, Nanoscale.

[42]  Izeddine Zorkani,et al.  Electrical properties of molybdenum disulfide MoS2. Experimental study and density functional calculation results , 1997 .

[43]  F. Jellinek,et al.  Preparation and Crystallinity of Molybdenum and Tungsten Sulfides , 1964 .

[44]  F. Besenbacher,et al.  Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst. , 2006, Journal of the American Chemical Society.

[45]  U. Bloeck,et al.  Reactive magnetron sputtering of molybdenum sulfide thin films: In situ synchrotron x-ray diffraction and transmission electron microscopy study , 2004 .

[46]  Mauricio Terrones,et al.  Curved nanostructured materials , 2003 .

[47]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[48]  Jing-Yuan Wang,et al.  Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide. , 2013, Chemical communications.

[49]  C. Sow,et al.  Surface modification studies of edge-oriented molybdenum sulfide nanosheets. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[50]  D. Mitlin,et al.  Silicon nanowire core aluminum shell coaxial nanocomposites for lithium ion battery anodes grown with and without a TiN interlayer , 2012 .

[51]  Phillip K. Koech,et al.  Electrochemically Induced High Capacity Displacement Reaction of PEO/MoS2/Graphene Nanocomposites with Lithium , 2011 .

[52]  Deren Yang,et al.  Assembling CoSn3 nanoparticles on multiwalled carbon nanotubes with enhanced lithium storage properties. , 2011, Nanoscale.

[53]  R. Tenne,et al.  Recent Progress in the Study of Inorganic Nanotubes and Fullerene-Like Structures , 2009 .

[54]  Arumugam Manthiram,et al.  A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. , 2012, Chemical communications.

[55]  Yong-Wei Zhang,et al.  Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons , 2012 .

[56]  W. Rüdorff,et al.  Einlagerungsverbindungen von Alkali- und Erdalkalimetallen in Molybdän- und Wolframdisulfid , 1959 .

[57]  B. S. Amirkhiz,et al.  Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis , 2012 .

[58]  J. R. Lince,et al.  Photoelectron spectroscopy of MoS2 at the sulfur 2p absorption edge , 1992 .

[59]  J. Dahn,et al.  Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V , 2004 .

[60]  X. Lou,et al.  Facile synthesis of hierarchical MoS₂ microspheres composed of few-layered nanosheets and their lithium storage properties. , 2012, Nanoscale.

[61]  Seifert,et al.  Structure and electronic properties of MoS2 nanotubes , 2000, Physical review letters.

[62]  Pei Yuan,et al.  Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic–organic hybrid nanocrystals as a superior precursor , 2012 .

[63]  E. Wachtel,et al.  Alkali metal intercalated fullerene-like MS(2) (M = W, Mo) nanoparticles and their properties. , 2002, Journal of the American Chemical Society.

[64]  Jun Chen,et al.  Lithium intercalation in open-ended TiS2 nanotubes. , 2003, Angewandte Chemie.

[65]  M. Terrones,et al.  An alternative route to molybdenum disulfide nanotubes , 2000 .

[66]  Xiaoping Shen,et al.  Graphene nanosheets for enhanced lithium storage in lithium ion batteries , 2009 .

[67]  M. Whittingham,et al.  The lithium intercalates of the transition metal dichalcogenides , 1975 .

[68]  Yong Wang,et al.  NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. , 2011, Nanoscale.

[69]  Electronic and mechanical properties of MoS2‐Ix nanotubes and Mo6SxIy nanowires , 2006 .

[70]  J. Tübke,et al.  High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. , 2012, Chemical communications.

[71]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[72]  Bing Sun,et al.  Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage , 2012 .

[73]  P. Mulhern Lithium intercalation in crystalline LixMoS2 , 1989 .

[74]  M. Wakihara,et al.  Amorphous MoS2 as the cathode of lithium secondary batteries , 1995 .

[75]  X. Lou,et al.  Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. , 2012, Nanoscale.

[76]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[77]  Wanlin Guo,et al.  Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. , 2012, Physical chemistry chemical physics : PCCP.

[78]  Seungho Yu,et al.  A simple L-cysteine-assisted method for the growth of MoS2 nanosheets on carbon nanotubes for high-performance lithium ion batteries. , 2013, Dalton transactions.

[79]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[80]  Jae-Hun Kim,et al.  One-step synthesis of a sulfur-impregnated graphene cathode for lithium-sulfur batteries. , 2012, Physical chemistry chemical physics : PCCP.

[81]  V. G. Rousseau,et al.  Finite temperature phase diagram of spin-1/2 bosons in two-dimensional optical lattice , 2011, 1109.3045.

[82]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[83]  R. Tenne,et al.  Inorganic nanotubes , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[84]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[85]  S. Das,et al.  High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon , 2010 .

[86]  J. Goodenough,et al.  Lithium Insertion into Transition-Metal Monosulfides: Tuning the Position of the Metal 4s Band , 2008 .

[87]  Yue Chan,et al.  Lithium ion storage between graphenes , 2011, Nanoscale research letters.

[88]  W. Rüdorff Einlagerungsverbindungen mit Alkali‐ und Erdalkalimetallen , 1959 .

[89]  Lixia Yuan,et al.  Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries , 2011 .

[90]  K. Sohn,et al.  SnO2/Graphene Composites with Self‐Assembled Alternating Oxide and Amine Layers for High Li‐Storage and Excellent Stability , 2013, Advanced materials.

[91]  Xiong Wen (David) Lou,et al.  SnO₂ nanosheet hollow spheres with improved lithium storage capabilities. , 2011, Nanoscale.

[92]  Yang,et al.  Structure of single-molecular-layer MoS2. , 1991, Physical review. B, Condensed matter.

[93]  Liwen Ji,et al.  Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries , 2010 .

[94]  K. Amine,et al.  Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries , 2011 .

[95]  Q. Li,et al.  α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. , 2012, Nanoscale.

[96]  Wensheng Yang,et al.  Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior , 2011 .

[97]  G. Seifert,et al.  Nanoseashells and Nanooctahedra of MoS2: Routes to Inorganic Fullerenes , 2009 .

[98]  D. Zhao,et al.  Synthesis of highly ordered mesoporous crystalline WS(2) and MoS(2) via a high-temperature reductive sulfuration route. , 2007, Journal of the American Chemical Society.

[99]  Qian Zhang,et al.  A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries. , 2012, Physical chemistry chemical physics : PCCP.

[100]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[101]  E. Shembel’,et al.  Electrolytic molybdenum sulfides for thin-layer lithium power sources , 2008 .

[102]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[103]  Jakob Kibsgaard,et al.  Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. , 2012, Nature materials.

[104]  J. Jamnik,et al.  Nanocrystallinity effects in lithium battery materials , 2003 .

[105]  The electrochemical properties of Li/TEGDME/MoS2 cells using multi-wall carbon nanotubes as a conducting agent , 2010 .

[106]  Huaihe Song,et al.  Two dimensional graphene–SnS2 hybrids with superior rate capability for lithium ion storage , 2012 .

[107]  Ping He,et al.  Nano active materials for lithium-ion batteries. , 2010, Nanoscale.

[108]  Jeremy Barker,et al.  Cathode materials for lithium rocking chair batteries , 1996 .

[109]  D. Mihailovic,et al.  Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 Nanotubes , 2001, Science.

[110]  D. Bélanger,et al.  Chemical Bonding in Restacked Single-Layer MoS2 by X-ray Absorption Spectroscopy , 1994 .

[111]  Jaephil Cho,et al.  MoS₂ nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. , 2011, Nano letters.

[112]  Kourosh Kalantar-Zadeh,et al.  Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. , 2012, Nanoscale.

[113]  Xueping Gao,et al.  Multi-electron reaction materials for high energy density batteries , 2010 .

[114]  Martin Pumera,et al.  Graphene-based nanomaterials for energy storage , 2011 .

[115]  Dutta,et al.  Lattice instabilities near the critical V-V separation for localized versus itinerant electrons in LiV1-yMyO2 (M=Cr or Ti) Li1-xVO2. , 1991, Physical review. B, Condensed matter.

[116]  J. Tu,et al.  Spherical NiO-C composite for anode material of lithium ion batteries , 2007 .

[117]  F. Wypych,et al.  1T-MoS2, a new metallic modification of molybdenum disulfide , 1992 .

[118]  Jian Zhen Ou,et al.  Two‐Dimensional Molybdenum Trioxide and Dichalcogenides , 2013 .

[119]  S. Bonnamy,et al.  Electrochemical storage of lithium in multiwalled carbon nanotubes , 1999 .

[120]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[121]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[122]  A. Ponce,et al.  Structure and catalytic properties of hexagonal molybdenum disulfide nanoplates , 2011 .

[123]  Jun Jin,et al.  In situ growth of Ni-Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation , 2012 .

[124]  Zaiping Guo,et al.  Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance , 2012 .

[125]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[126]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[127]  F. L. Deepak,et al.  Recent Highlights in the Synthesis, Structure, Properties, and Applications of MoS2 Nanotubes , 2010 .

[128]  Jiaguo Yu,et al.  Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[129]  Li-Jun Wan,et al.  Better lithium-ion batteries with nanocable-like electrode materials , 2011 .

[130]  Zhanwei Xu,et al.  Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading , 2012, Nano Research.

[131]  G. Thompson,et al.  XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions , 1997 .

[132]  L. Nazar,et al.  Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries , 2011 .

[133]  Dong‐Wan Kim,et al.  Biomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes. , 2012, Nanoscale.

[134]  Kyoung-Hee Shin,et al.  Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries , 2012 .

[135]  P. O’Brien,et al.  Studies of Molybdenum Disulfide Nanostructures Prepared by AACVD Using Single-Source Precursors† , 2006 .

[136]  M. Nathan,et al.  Thin-film lithium and lithium-ion batteries with electrochemically deposited molybdenum oxysulfide cathodes , 2003 .

[137]  M. Whittingham,et al.  An NMR study of the alkali metal intercalation phase LixTiS2: Relation to structure, thermodynamics, and ionicity , 1976 .

[138]  R. Bell,et al.  Preparation and Characterization of a New Crystalline Form of Molybdenum Disulfide , 1957 .

[139]  Weixiang Chen,et al.  In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. , 2011, Chemical communications.

[140]  Linus Pauling,et al.  The Crystal Structure of Molybdenite , 1923 .

[141]  Deren Yang,et al.  Vertically ordered Ni₃Si₂/Si nanorod arrays as anode materials for high-performance Li-ion batteries. , 2012, Nanoscale.

[142]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[143]  Yong‐Sheng Hu,et al.  Lithium storage in commercial MoS2 in different potential ranges , 2012 .

[144]  R. Tittsworth,et al.  X-ray absorption fine structure study of the atomic and electronic structure of molybdenum disulfide intercalation compounds with transition metals , 1998 .

[145]  Chunjoong Kim,et al.  Two‐Dimensional SnS2 Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries , 2008 .

[146]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[147]  Weijun Li,et al.  Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route , 2009 .

[148]  P. Balaya,et al.  Mesoporous TiO2 with high packing density for superior lithium storage , 2010 .

[149]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[150]  M. Stanley Whittingham,et al.  The Role of Ternary Phases in Cathode Reactions , 1976 .

[151]  Zhiyuan Zeng,et al.  Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets , 2013, Nature Communications.

[152]  Xueping Gao,et al.  Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres , 2010 .

[153]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[154]  G. Galli,et al.  Electronic properties of MoS2 nanoparticles , 2007 .

[155]  Shuru Chen,et al.  Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li–S batteries with excellent lithium storage performance , 2012 .

[156]  I. Chorkendorff,et al.  A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. , 2013, Chemical communications.

[157]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[158]  Rong Zhang,et al.  Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres , 2003 .

[159]  Yunhui Huang,et al.  Nitrogen‐Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability , 2012, Advanced materials.

[160]  Chun-hua Chen,et al.  Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. , 2012, Nanoscale.

[161]  M. Kanatzidis,et al.  Structure of Restacked MoS2 and WS2 Elucidated by Electron Crystallography , 1999 .

[162]  B. Neves,et al.  Dynamic negative compressibility of few-layer graphene, h-BN, and MoS2. , 2012, Nano letters.

[163]  R. Prins,et al.  Scanning Tunneling Microscopic Investigation of 1T-MoS2 , 1998 .

[164]  M. Delville,et al.  Exfoliation-induced nanoribbon formation of poly(3,4-ethylene dioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteries , 2006 .

[165]  C. Julien,et al.  Structural studies of MoS2 intercalated by lithium , 1989 .

[166]  S. K. Srivastava,et al.  MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. , 2013, Chemical communications.

[167]  Yong‐Sheng Hu,et al.  Lithium storage performance in ordered mesoporous MoS2 electrode material , 2012 .

[168]  Peter K. Dorhout,et al.  Template Synthesis of Near-Monodisperse 1 Microscale Nanofibers and Nanotubules of MoS 2 , 1998 .

[169]  R. Hultgren Equivalent Chemical Bonds Formed by s, p, and d Eigenfunctions , 1932 .

[170]  K. Ariga,et al.  High purity graphenes prepared by a chemical intercalation method. , 2010, Nanoscale.

[171]  N. Barreau,et al.  MoS2 textured films grown on glass substrates through sodium sulfide based compounds , 2002 .

[172]  X. Zu,et al.  Electronic structures and magnetic properties of MoS2 nanostructures: atomic defects, nanoholes, nanodots and antidots. , 2013, Physical chemistry chemical physics : PCCP.

[173]  C. Julien,et al.  Electrochemical studies of disordered MoS2 as cathode material in lithium batteries , 1992 .

[174]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[175]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[176]  I. Alexandrou,et al.  Structural investigation of MoS2 core–shell nanoparticles formed by an arc discharge in water , 2003 .

[177]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[178]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[179]  X. Jia,et al.  Graphene edges: a review of their fabrication and characterization. , 2011, Nanoscale.

[180]  Jingbo Hu,et al.  Enhanced electrocatalytic activity for hydrogen evolution reaction from self-assembled monodispersed molybdenum sulfide nanoparticles on an Au electrode , 2013 .

[181]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[182]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[183]  D. Su,et al.  Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. , 2010, ChemSusChem.

[184]  Jeng-Yu Lin,et al.  Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells , 2012 .

[185]  Q. Li,et al.  Polycrystalline Molybdenum Disulfide (2H−MoS2) Nano- and Microribbons by Electrochemical/Chemical Synthesis , 2004 .

[186]  Huanlei Wang,et al.  Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors , 2013 .

[187]  Christian Kisielowski,et al.  Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. , 2011, Angewandte Chemie.

[188]  Bin Yu,et al.  Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell , 2012 .

[189]  V. Barone,et al.  Enhanced electrochemical lithium storage by graphene nanoribbons. , 2010, Journal of the American Chemical Society.

[190]  L. Archer,et al.  Self-assembled MoS2–carbon nanostructures: influence of nanostructuring and carbon on lithium battery performance , 2012 .

[191]  Yu‐Guo Guo,et al.  Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. , 2013, Chemical communications.

[192]  R. Tenne,et al.  Morphology of nested fullerenes. , 1995, Physical review letters.

[193]  Size-tunable Au nanoparticles on MoS2(0001). , 2012, Nanotechnology.

[194]  M. Dines Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides , 1975 .

[195]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[196]  Jin Xie,et al.  Comparing one- and two-dimensional heteronanostructures as silicon-based lithium ion battery anode materials. , 2011, ACS nano.

[197]  G. Yin,et al.  Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries , 2011 .

[198]  Yong‐Sheng Hu,et al.  Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. , 2009, Nano letters.

[199]  J. B. Goodenough,et al.  Review Lecture - Fast ionic conduction in solid , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[200]  C. Julien Lithium intercalated compounds: Charge transfer and related properties , 2003 .

[201]  G. Seifert,et al.  Atomic-scale structure of Mo6S6 nanowires. , 2008, Nano letters.

[202]  Lev Rapoport,et al.  Applications of WS2(MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites , 2005 .

[203]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[204]  R. Newberry Polytypism in molybdenite (I); A non-equilibrium impurity-induced phenomenon , 1979 .

[205]  Hao Jiang,et al.  Hydrothermal synthesis of novel Mn(3)O(4) nano-octahedrons with enhanced supercapacitors performances. , 2010, Nanoscale.

[206]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[207]  Yongyao Xia,et al.  Ti-based compounds as anode materials for Li-ion batteries , 2012 .

[208]  Wenhui Shi,et al.  Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. , 2013, Small.

[209]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[210]  Zhiyuan Zeng,et al.  Metal dichalcogenide nanosheets: preparation, properties and applications. , 2013, Chemical Society reviews.

[211]  Xinping Qiu,et al.  Synthesis and high rate properties of nanoparticled lithium cobalt oxides as the cathode material for lithium-ion battery , 2002 .

[212]  Shengbai Zhang,et al.  MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. , 2008, Journal of the American Chemical Society.

[213]  Haijiao Zhang,et al.  Li Storage Properties of Disordered Graphene Nanosheets , 2009 .

[214]  John L. Hutchison,et al.  Bulk Synthesis of Inorganic Fullerene-like MS2 (M = Mo, W) from the Respective Trioxides and the Reaction Mechanism , 1996 .

[215]  Mengqiu Long,et al.  First-principles prediction of charge mobility in carbon and organic nanomaterials. , 2012, Nanoscale.

[216]  X. W. Sun Growing quantum dots in polymers advances hybrid solar cell research. , 2010, ChemSusChem.

[217]  G. Zou,et al.  Simple synthesis of MoS2 inorganic fullerene-like nanomaterials from MoS2 amorphous nanoparticles , 2008 .

[218]  X. Zheng,et al.  Complex spinel titanate nanowires for a high rate lithium-ion battery , 2011 .

[219]  Rong Zeng,et al.  Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications , 2009 .

[220]  E. Benavente,et al.  Intercalation chemistry of molybdenum disulfide , 2002 .

[221]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[222]  Z. Gu,et al.  Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. , 2010, Journal of the American Chemical Society.

[223]  Huaihe Song,et al.  Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries , 2012 .

[224]  Ying Dai,et al.  Graphene adhesion on MoS₂ monolayer: an ab initio study. , 2011, Nanoscale.

[225]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[226]  P. D. Fleischauer,et al.  Electronic Structure and Lubrication Properties of MoS2: a Qualitative Molecular Orbital Approach , 1989 .

[227]  Jakob Kibsgaard,et al.  Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. , 2010, ACS nano.

[228]  U. Pal,et al.  Graphite-incorporated MoS2 nanotubes: a new coaxial binary system. , 2005, The journal of physical chemistry. B.

[229]  Sergei V. Kalinin,et al.  Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. , 2010, Nature nanotechnology.

[230]  G. Frey,et al.  Optical Properties of MS_2 (M = Mo, W) Inorganic Fullerenelike and Nanotube Material Optical Absorption and Resonance Raman Measurements , 1998 .

[231]  F. Jellinek,et al.  On the structure of molybdenum diselenide and disulfide , 1986 .

[232]  D. Pribat,et al.  Alumina-coated silicon-based nanowire arrays for high quality Li-ion battery anodes , 2012 .

[233]  X. Lou,et al.  Glucose-assisted growth of MoS2 nanosheets on CNT backbone for improved lithium storage properties. , 2011, Chemistry.

[234]  Jun Chen,et al.  Carbon nanotube network modified carbon fibre paper for Li-ion batteries , 2009 .

[235]  Chunhai Fan,et al.  Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. , 2013, Journal of the American Chemical Society.

[236]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[237]  Jinghong Li,et al.  Facilitated Lithium Storage in MoS2 Overlayers Supported on Coaxial Carbon Nanotubes , 2007 .

[238]  Yunhui Huang,et al.  Layer-by-layer assembled MoO₂-graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries. , 2012, Nanoscale.

[239]  J. Donoso,et al.  Electrical conductivity and lithium diffusion in molybdenum disulfide intercalated with poly(ethylene oxide) , 1996 .

[240]  Jess P. Wilcoxon,et al.  Catalytic Photooxidation of Pentachlorophenol Using Semiconductor Nanoclusters , 2000 .

[241]  Qiang Zhang,et al.  High-performance flexible lithium-ion electrodes based on robust network architecture , 2012 .

[242]  E. Cairns,et al.  Nanostructured Li₂S-C composites as cathode material for high-energy lithium/sulfur batteries. , 2012, Nano letters.

[243]  Hui-Ming Cheng,et al.  A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries , 2012 .

[244]  Jun Liu,et al.  Optimization of mesoporous carbon structures for lithium–sulfur battery applications , 2011 .

[245]  Yu‐Guo Guo,et al.  Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. , 2012, Nanoscale.

[246]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[247]  G. Farrington,et al.  Fast Ionic Transport in Solids , 1979, Science.

[248]  J. Tarascon,et al.  On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential , 2002 .

[249]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .

[250]  W. Jaegermann,et al.  Li intercalation across and along the van der Waals surfaces of MoS2(0001) , 1995 .

[251]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[252]  P. D. Fleischauer Fundamental aspects of the electronic structure, materials properties and lubrication performance of sputtered MoS2 films , 1987 .

[253]  Rong Yang,et al.  Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. , 2011, ACS nano.

[254]  Yang Shao-Horn,et al.  Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors , 2011 .

[255]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[256]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[257]  A. L. Ivanovskii,et al.  Atomic defects of the walls and the electronic structure of molybdenum disulfide nanotubes , 2007 .

[258]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[259]  Structural and mechanical properties of MoS2–Ix nanotubes and Mo6SxIy nanowires , 2005 .

[260]  Feihe Huang,et al.  Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries , 2011 .

[261]  G. Seifert,et al.  Nanosized allotropes of molybdenum disulfide , 2007 .

[262]  N. Imanishi,et al.  Study on lithium intercalation into MoS2 , 1992 .

[263]  Yingjie Zhu,et al.  Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property , 2010, Nanoscale research letters.