Blood Vessel Growth: Mathematical Analysis and Computer Simulation, Fractality, and Optimality

The structural complexity of the circulatory system exceeds the available genetic information. In the developmental process, therefore, self-organization on epigenetic levels can be postulated, which exploits information that is being generated during embryogenesis. We used mathematical tools to analyze patterns and complexity, and designed a computer model to predict geometrical and biophysical properties of bifurcating vessel systems. In particular, some boundary conditions during development, and the problem of optimality are addressed. We propose that the complexity of blood vessel formation in vivo and in sapio may be adequately described with a combination of various classical geometrical and physical concepts, supplemented by concepts of fractal geometry.

[1]  D. Marmé,et al.  Proliferation pattern of capillary endothelial cells in chorioallantoic membrane development indicates local growth control, which is counteracted by vascular endothelial growth factor application , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[2]  Sandro Rossitti,et al.  Vascular Dimensions of the Cerebral Arteries Follow the Principle of Minimum Work , 1993, Stroke.

[3]  J D Murray,et al.  Use and abuse of fractal theory in neuroscience , 1995, The Journal of comparative neurology.

[4]  E. Olson,et al.  Expression of the SM22alpha promoter in transgenic mice provides evidence for distinct transcriptional regulatory programs in vascular and visceral smooth muscle cells , 1996, The Journal of cell biology.

[5]  H. Kurz,et al.  Multivariate Characterization of Blood Vessel Morphogenesis in the Avian Chorioallantoic Membrane (CAM): Cell Proliferation, Length Density and Fractal Dimension , 1994 .

[6]  S D Caruthers,et al.  Effects of pulmonary blood flow on the fractal nature of flow heterogeneity in sheep lungs. , 1994, Journal of applied physiology.

[7]  W. R. Hess Das Prinzip des kleinsten Kraftverbrauches im Dienste hämodynamischer Forschung , 1914 .

[8]  H. Tazawa Oxygen and CO2 Exchange and Acid-Base Regulation in the Avian Embryo , 1980 .

[9]  K. Sandau,et al.  Modelling of vascular growth processes: A stochastic biophysical approach to embryonic angiogenesis , 1994, Journal of microscopy.

[10]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[11]  J B Bassingthwaighte,et al.  Regional myocardial flow heterogeneity explained with fractal networks. , 1989, The American journal of physiology.

[12]  R. Auerbach,et al.  Angiogenesis inhibition: a review. , 1994, Pharmacology & therapeutics.

[13]  G. Owens,et al.  Regulation of differentiation of vascular smooth muscle cells. , 1995, Physiological reviews.

[14]  S. Schmidt,et al.  Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. , 1996, Microvascular research.

[15]  T H Adair,et al.  Morphometric measurements of chorioallantoic membrane vascularity: effects of hypoxia and hyperoxia. , 1991, The American journal of physiology.

[16]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[17]  G. Owens,et al.  Development of the aortic vessel wall as defined by vascular smooth muscle and extracellular matrix markers. , 1996, Developmental biology.

[18]  Joseph C. LaManna,et al.  Architectural alterations in rat cerebral microvessels after hypobaric hypoxia , 1994, Brain Research.

[19]  C D Murray,et al.  The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Small,et al.  The SM 22 promoter directs tissue-specific expression in arterial but not in venous or visceral smooth muscle cells in transgenic mice. , 1996, Development.

[21]  D'arcy W. Thompson On Growth and Form , 1945 .

[22]  E. Weibel,et al.  Fractals in Biology and Medicine , 1994 .

[23]  M S Pollanen,et al.  Dimensional optimization at different levels of the arterial hierarchy. , 1992, Journal of theoretical biology.

[24]  H. Kurz,et al.  Development of the embryonic vascular system. , 1995, Cellular & molecular biology research.

[25]  K. Sandau A note on fractal sets and the measurement of fractal dimension , 1996 .

[26]  Martin A Mainster,et al.  The fractal properties of retinal vessels: Embryological and clinical implications , 1990, Eye.

[27]  A. Pries,et al.  Blood flow in microvascular networks. Experiments and simulation. , 1990, Circulation research.

[28]  K. Sandau,et al.  On the bifurcation of blood vessels--Wilhelm Roux's doctoral thesis (Jena 1878)--a seminal work for biophysical modelling in developmental biology. , 1997, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[29]  P Sterling,et al.  Retinal neurons and vessels are not fractal but space‐filling , 1995, The Journal of comparative neurology.

[30]  Some remarks on the accuracy of surface area estimation using the spatial grid , 1994 .

[31]  J. Folkman,et al.  Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. , 1974, Developmental biology.

[32]  C. Stark An invasion percolation model of drainage network evolution , 1991, Nature.

[33]  L. V. Mierop,et al.  Development of arterial blood pressure in the chick embryo. , 1967 .

[34]  P. Davies,et al.  Flow-mediated endothelial mechanotransduction. , 1995, Physiological reviews.

[35]  M. Frame,et al.  Energy optimization and bifurcation angles in the microcirculation. , 1995, Microvascular research.

[36]  P. Tăutu Fractal and Non-Fractal Growth of Biological Cell Systems , 1994 .

[37]  M. Sernetz,et al.  The organism as bioreactor. Interpretation of the reduction law of metabolism in terms of heterogeneous catalysis and fractal structure. , 1985, Journal of theoretical biology.

[38]  Konrad Sandau,et al.  Spatial Fibre and Surface Processes - Stereological Estimations and Applications , 1996 .

[39]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[40]  R. Auerbach,et al.  The Development of the vascular system , 1991 .

[41]  P. Eggli,et al.  First blood vessels in the avian neural tube are formed by a combination of dorsal angioblast immigration and ventral sprouting of endothelial cells. , 1996, Developmental biology.

[42]  B. Masters FRACTAL ANALYSIS OF NORMAL HUMAN RETINAL BLOOD VESSELS , 1994 .

[43]  S. Schwartz,et al.  Development of chicken aortic smooth muscle: expression of cytoskeletal and basement membrane proteins defines two distinct cell phenotypes emerging from a common lineage. , 1995, Cellular & molecular biology research.

[44]  E. Weibel Fractal geometry: a design principle for living organisms. , 1991, The American journal of physiology.

[45]  M. Kleiber Body size and metabolism , 1932 .

[46]  H. Uylings,et al.  Optimization of diameters and bifurcation angles in lung and vascular tree structures. , 1977, Bulletin of mathematical biology.

[47]  M. Woldenberg,et al.  Relation of branching angles to optimality for four cost principles. , 1986, Journal of theoretical biology.

[48]  A. Pries,et al.  Design principles of vascular beds. , 1995, Circulation research.

[49]  B. Hambly Fractals, random shapes, and point fields , 1994 .

[50]  N. Suwa,et al.  Estimation of intravascular blood pressure gradient by mathematical analysis of arterial casts. , 1963, The Tohoku journal of experimental medicine.

[51]  Wilhelm Roux,et al.  Gesammelte Abhandlungen über Entwickelungsmechanik der Organismen , 1895 .

[52]  H Kurz,et al.  Measuring fractal dimension and complexity — an alternative approach with an application , 1997, Journal of microscopy.

[53]  Wilhelm Roux,et al.  Gesammelte Abhandlungen über Entwickelungsmechanik der Organismen / von Wilhelm Roux. , 1895 .

[54]  M. Labarbera Principles of design of fluid transport systems in zoology. , 1990, Science.

[55]  G. Martiny-Baron,et al.  VEGF121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of chorioallantoic membrane. , 1996, Developmental biology.

[56]  Luis M. Cruz-Orive,et al.  Stereology of single objects , 1997 .

[57]  Pierre Soille,et al.  On the Validity of Fractal Dimension Measurements in Image Analysis , 1996, J. Vis. Commun. Image Represent..

[58]  R. Auerbach,et al.  Assays for angiogenesis: a review. , 1991, Pharmacology & therapeutics.