An efficient method for estimating from sparse data the parameters of the impact energy variation in the ductile-brittle transition region

An efficient method is proposed for estimating from sparse data the parameters of the systematic variation of the Charpy impact energy in the ductile-brittle transition region of low-carbon weld steels. The parameter estimates are practically unbiased and with a very good precision even in the case of very large scatter of the absorbed impact energy. Furthermore, the parameter estimates determining the shape of the transition curve are not affected by its location along the temperature axis. The method is robust regarding the temperature corresponding to a specified impact energy level. Thus, for different type of scatter of the impact toughness and different lengths of the scatter intervals, the estimates of the temperature corresponding to a specified impact energy vary in narrow limits. The transition temperature corresponding to a specified impact energy level is estimated with a very good precision, which is important for quantifying the deterioration of properties due to embrittlement.

[1]  Michael T. Todinov On some limitations of the Johnson–Mehl–Avrami–Kolmogorov equation , 2000 .

[2]  Michael T. Todinov Fitting impact fracture toughness data in the transition region , 1999 .

[3]  John F. Knott,et al.  Modelling the impact energy in the ductile/brittle transition region of C-Mn multi-run welds , 2000 .

[4]  A. F. M. Smith,et al.  Charpy Impact Energy Data: a Markov Chain Monte Carlo Analysis , 1997 .

[5]  D. Downing,et al.  Estimating Charpy transition temperature shift using Weibull analysis , 1990 .

[6]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[7]  R. Moskovic,et al.  A statistical model for the analysis and prediction of the effect of neutron irradiation on Charpy impact energy curves , 1996 .

[8]  M. Degroot,et al.  Probability and Statistics , 2021, Examining an Operational Approach to Teaching Probability.

[9]  D. P. Koistinen,et al.  A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , 1959 .

[10]  R. Mosković,et al.  Modeling charpy impact energy property changes using a bayesian method , 1997 .

[11]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[12]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[13]  J. Neter,et al.  Applied Linear Regression Models , 1983 .

[14]  Ø. Grong,et al.  Prediction of weld metal Charpy V notch toughness , 1992 .

[15]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[16]  George A. F. Seber,et al.  Linear regression analysis , 1977 .