Sulfonated Caspian Sea Sand: A Promising Heterogeneous Solid Acid Catalyst in Comparison with –SO 3 H Functionalized NiFe 2 O 4 @SiO 2 @KIT‐6

[1]  J. Małecki,et al.  Ultrasound aided solvent-free synergy: an improved synthetic approach to access 3,4-dihydropyrimidin-2(1H)-ones , 2019, Journal of the Iranian Chemical Society.

[2]  Xu Liao,et al.  An Effective One-Pot Access to 2-Amino-4H-benzo[b]pyrans and 1,4-Dihydropyridines via γ-Cyclodextrin-Catalyzed Multi-Component Tandem Reactions in Deep Eutectic Solvent , 2019, Catalysis Letters.

[3]  A. Maleki,et al.  Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. , 2019, Carbohydrate polymers.

[4]  Sun Weike,et al.  One-pot Multicomponent Synthesis of Highly Functionalized 1,4-Dihydropyridines Using Porcine Pancreatic Lipase , 2019 .

[5]  P. K. Labhane,et al.  ZnO@SnO2 Mixed Metal Oxide as an Efficient and Recoverable Nanocatalyst for the Solvent Free Synthesis of Hantzsch 1,4-Dihydropyridines , 2019, Letters in Organic Chemistry.

[6]  Qi Sun,et al.  Highly Efficient Synthesis of Substituted 3,4-Dihydropyrimidin-2-(1H)-ones (DHPMs) Catalyzed by Hf(OTf)4: Mechanistic Insights into Reaction Pathways under Metal Lewis Acid Catalysis and Solvent-Free Conditions , 2019, Molecules.

[7]  Bo Wu,et al.  Synthesis of Benzofuran-fused 1,4-Dihydropyridines via Bifunctional Squaramide-catalyzed Formal [4+2] Cycloaddition of Azadienes with Malononitrile , 2018, Chinese Journal of Chemistry.

[8]  Zoleikha Hajizadeh,et al.  Magnetic guanidinylated chitosan nanobiocomposite: A green catalyst for the synthesis of 1,4-dihydropyridines. , 2018, International journal of biological macromolecules.

[9]  T. Tu,et al.  A novel micro-flow system under microwave irradiation for continuous synthesis of 1,4-dihydropyridines in the absence of solvents via Hantzsch reaction , 2018 .

[10]  Raquel P. Herrera,et al.  Organocatalytic Enantioselective Synthesis of 1,4‐Dihydropyridines , 2017 .

[11]  G. Chaturbhuj,et al.  Sulfated polyborate: An efficient and reusable catalyst for one pot synthesis of Hantzsch 1,4-dihydropyridines derivatives using ammonium carbonate under solvent free conditions , 2017 .

[12]  S. Mishra,et al.  Uptake of Hexavalent Chromium in Electroplating Wastewater by Hydrothermally Treated and Functionalized Sand and Its Sustainable Reutilization for Glass Production , 2017 .

[13]  S. Coles,et al.  A Copper‐Benzotriazole‐Based Coordination Polymer Catalyzes the Efficient One‐Pot Synthesis of (N′‐Substituted)‐hydrazo‐4‐aryl‐1,4‐dihydropyridines from Azines , 2017 .

[14]  S. Shariati,et al.  Synthesis of bis- and tris(indolyl)methanes catalyzed by an inorganic nano-sized catalyst followed by dehydrogenation to hyperconjugated products , 2016 .

[15]  S. Shariati,et al.  Efficient synthesis of 3,3′-bisindoles catalyzed by Fe3O4@MCM-48-OSO3H magnetic core-shell nanoparticles , 2015 .

[16]  A. Morsali,et al.  Basic isoreticular nanoporous metal–organic framework for Biginelli and Hantzsch coupling: IRMOF-3 as a green and recoverable heterogeneous catalyst in solvent-free conditions , 2014 .

[17]  Raheleh Teymuri,et al.  A green synthesis of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives using nanosilica-supported tin(II) chloride as a heterogeneous nanocatalyst , 2013, Monatshefte für Chemie - Chemical Monthly.

[18]  A. Kiasat,et al.  Fe3O4@silica sulfuric acid nanoparticles: An efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones , 2013 .

[19]  R. Zadghaffari,et al.  Water softening using caustic soda: privileges and restrictions , 2013 .

[20]  R. Mohan,et al.  Iron(III) tosylate catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via the Biginelli reaction , 2013 .

[21]  D. Velegol,et al.  Antimicrobial sand via adsorption of cationic Moringa oleifera protein. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[22]  F. Mohammadi,et al.  Fe3O4 Nanoparticles as an Efficient and Magnetically Recoverable Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones under Solvent-Free Conditions , 2011 .

[23]  E. Sheikhhosseini,et al.  P-Dodecylbenzenesulfonic acid (DBSA), a Brønsted acid-surfactant catalyst for Biginelli reaction in water and under solvent free conditions , 2011 .

[24]  K. Akamanchi,et al.  Sulfated tungstate: An alternative, eco-friendly catalyst for Biginelli reaction , 2011 .

[25]  H. Zamani,et al.  Silica Gel-Supported Polyphosphoric Acid (PPA-SiO2) Catalyzed One-Pot Multi-Component Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones and -thiones: An Efficient Method for the Biginelli Reaction , 2011 .

[26]  M. Tajbakhsh,et al.  Supramolecular synthesis of 3,4-dihydropyrimidine-2(1H)-one/thiones under neat conditions , 2011 .

[27]  Xue‐Wei Liu,et al.  A microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions , 2011 .

[28]  A. Jafari,et al.  Synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 1,4-dihydropyridines using ammonium carbonate in water , 2010 .

[29]  B. Carboni,et al.  An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions , 2009 .

[30]  B. Carboni,et al.  One-Pot Synthesis of 1,4-Dihydropyridines via a Phenylboronic Acid Catalyzed Hantzsch Three-Component Reaction , 2008 .

[31]  B. Bhanage,et al.  Y(NO3)3·6H2O: A novel and reusable catalyst for one pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions , 2007 .

[32]  A. Hajipour,et al.  A convenient and efficient protocol for oxidative aromatization of Hantzsch 1,4-dihydropyridines using benzyltriphenylphosphonium peroxymonosulfate under almost neutral reaction conditions. , 2007, Bioorganic & medicinal chemistry letters.

[33]  Yijun Huang,et al.  Highly enantioselective Biginelli reaction using a new chiral ytterbium catalyst: asymmetric synthesis of dihydropyrimidines. , 2006, Journal of the American Chemical Society.

[34]  Murugulla Adharvana Chari,et al.  Silica gel/NaHSo4 catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature , 2005 .

[35]  B. Ranu,et al.  Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. , 2005, Organic letters.

[36]  K. Ariga,et al.  Recent advances in functionalization of mesoporous silica. , 2005, Journal of nanoscience and nanotechnology.

[37]  A. Khosropour,et al.  An Efficient and Environmentally Friendly Method for Synthesis of 3,4‐Dihydropyrimidin‐2(1H)‐ones Catalyzed by Bi(NO3)3 · 5H2O , 2004 .

[38]  A. Chakraborty,et al.  In(OTf)3-catalysed one-pot synthesis of 3,4-dihydropyrimidin-2(lH)-ones , 2004 .

[39]  D. Triggle 1,4‐dihydropyridine calcium channel ligands: Selectivity of action. The roles of pharmacokinetics, state‐dependent interactions, channel isoforms, and other factors , 2003 .

[40]  J. Molnár,et al.  3,5-dibenzoyl-1,4-dihydropyridines: synthesis and MDR reversal in tumor cells. , 2002, Bioorganic & medicinal chemistry.

[41]  C. S. Reddy,et al.  ChemInform Abstract: Mn(OAc)3×2H2O-Mediated Three-Component, One-Pot Condensation Reaction: An Efficient Synthesis of 4-Aryl-Substituted 3,4-Dihydropyrimidin-2-ones. , 2001 .

[42]  Guengerich Fp,et al.  Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. , 1986 .

[43]  J. G. Keay The Reduction of Nitrogen Heterocycles with Complex Metal Hydrides , 1986 .

[44]  J. Kuthan,et al.  Synthesis of 3,5-dicyano-4-phenyl-2,6-bis(4- p -terphenylyl)-1,4-dihydropyridine. An attempt at extending the Hantzsch synthesis , 1985 .

[45]  D. J. Triggle,et al.  New developments in calcium ion channel antagonists , 1983 .