Single binding versus single channel recordings: a new approach to study ionotropic receptors.

The observation of ligand binding to a single molecule has become feasible with recent developments in laser-based fluorescence microscopy. We have simulated such single ligand-binding events for the nicotinic acetylcholine receptor in order to provide comparisons with single channel events under pulsed agonist conditions. The binding events would be more complex than ionic events due to multiple interconversions between different conformational states at the same degree of ligation. Nevertheless, recording of such events could provide valuable new information concerning the role of ligand binding in stabilizing conformational changes and the degree of functional nonequivalence of the binding sites.