Impact ionization across the conduction‐band‐edge discontinuity of quantum‐well heterostructures
暂无分享,去创建一个
[1] G. Dohler. The potential of n-i-p-i doping superlattices for novel semiconductor devices , 1985 .
[2] D. A. Kleinman,et al. Parabolic quantum wells with theGaAs−AlxGa1−xAssystem , 1984 .
[3] Federico Capasso. Band‐gap engineering via graded gap, superlattice, and periodic doping structures: Applications to novel photodetectors and other devices , 1983 .
[4] J. S. Blakemore. Semiconducting and other major properties of gallium arsenide , 1982 .
[5] J. Ziman,et al. In: Electrons and Phonons , 1961 .
[6] S. Luryi,et al. New Transient electrical polarization phenomenon in sawtooth superlattices , 1983 .
[7] A. Reklaitis,et al. Monte Carlo treatment of electron-electron collisions , 1975 .
[8] F. Capasso,et al. Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.
[9] P. Landsberg,et al. Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[10] Karl Hess,et al. Impact ionisation in multilayered heterojunction structures , 1980 .
[11] Federico Capasso,et al. Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .
[12] R. M. Biefeld,et al. An ion-implanted Ga(AsP)/GaP strained-layer superlattice photodetector , 1984, IEEE Electron Device Letters.
[13] J. Ziman. Principles of the Theory of Solids , 1965 .
[14] G. C. Osbourn,et al. InAsSb strained‐layer superlattices for long wavelength detector applications , 1984 .
[15] A. Sugimura,et al. Auger recombination effect on threshold current of InGaAsP quantum well lasers , 1983 .
[16] R. Nuzzo,et al. Chemically induced enhancement of nucleation in noble metal deposition , 1983 .
[17] K. Ploog,et al. New long‐wavelength photodetector based on reverse‐biased doping superlattices , 1984 .
[18] R. A. Abram,et al. Theory of Auger recombination in a quantum well heterostructure , 1985 .
[19] P. T. Landsberg,et al. Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[20] D. A. Kleinman,et al. Energy-gap discontinuities and effective masses for G a A s − Al x Ga 1 − x As quantum wells , 1984 .
[21] Amnon Yariv,et al. A new infrared detector using electron emission from multiple quantum wells , 1983 .
[22] P. Landsberg. Non‐Radiative Transitions in Semiconductors , 1970 .
[23] P. Landsberg,et al. Auger recombination and impact ionization involving traps in semiconductors , 1964 .
[24] M. Takeshima. Auger recombination in InAs, GaSb, InP, and GaAs , 1972 .
[25] F. Capasso. Avalanche Photodiodes with Enhanced Ionization Rates Ratio: Towards a Solid State Photomultiplier , 1983, IEEE Transactions on Nuclear Science.