Impact ionization across the conduction‐band‐edge discontinuity of quantum‐well heterostructures

Impact ionization across the band‐edge discontinuity of quantum‐well heterostructures is studied theoretically. We consider a heterolayer structure of alternating AlxGa1−xAs and GaAs layers where the GaAs layers are heavily doped with donors. Thus a large number of electrons is confined to the quantum‐well region. Incident electrons are heated up by applied electric fields and collide with the electrons confined in the well regions. Both the ionization rate as a function of the incident energy, and average ionization rates are computed. Device applications of such multiple quantum‐well structures and the possibility of a complete analog to the conventional photomultiplier are discussed.

[1]  G. Dohler The potential of n-i-p-i doping superlattices for novel semiconductor devices , 1985 .

[2]  D. A. Kleinman,et al.  Parabolic quantum wells with theGaAs−AlxGa1−xAssystem , 1984 .

[3]  Federico Capasso Band‐gap engineering via graded gap, superlattice, and periodic doping structures: Applications to novel photodetectors and other devices , 1983 .

[4]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[5]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[6]  S. Luryi,et al.  New Transient electrical polarization phenomenon in sawtooth superlattices , 1983 .

[7]  A. Reklaitis,et al.  Monte Carlo treatment of electron-electron collisions , 1975 .

[8]  F. Capasso,et al.  Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio , 1983, IEEE Transactions on Electron Devices.

[9]  P. Landsberg,et al.  Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Karl Hess,et al.  Impact ionisation in multilayered heterojunction structures , 1980 .

[11]  Federico Capasso,et al.  Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .

[12]  R. M. Biefeld,et al.  An ion-implanted Ga(AsP)/GaP strained-layer superlattice photodetector , 1984, IEEE Electron Device Letters.

[13]  J. Ziman Principles of the Theory of Solids , 1965 .

[14]  G. C. Osbourn,et al.  InAsSb strained‐layer superlattices for long wavelength detector applications , 1984 .

[15]  A. Sugimura,et al.  Auger recombination effect on threshold current of InGaAsP quantum well lasers , 1983 .

[16]  R. Nuzzo,et al.  Chemically induced enhancement of nucleation in noble metal deposition , 1983 .

[17]  K. Ploog,et al.  New long‐wavelength photodetector based on reverse‐biased doping superlattices , 1984 .

[18]  R. A. Abram,et al.  Theory of Auger recombination in a quantum well heterostructure , 1985 .

[19]  P. T. Landsberg,et al.  Auger effect in semiconductors , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  D. A. Kleinman,et al.  Energy-gap discontinuities and effective masses for G a A s − Al x Ga 1 − x As quantum wells , 1984 .

[21]  Amnon Yariv,et al.  A new infrared detector using electron emission from multiple quantum wells , 1983 .

[22]  P. Landsberg Non‐Radiative Transitions in Semiconductors , 1970 .

[23]  P. Landsberg,et al.  Auger recombination and impact ionization involving traps in semiconductors , 1964 .

[24]  M. Takeshima Auger recombination in InAs, GaSb, InP, and GaAs , 1972 .

[25]  F. Capasso Avalanche Photodiodes with Enhanced Ionization Rates Ratio: Towards a Solid State Photomultiplier , 1983, IEEE Transactions on Nuclear Science.