Toward the Next Generation of Recommender Systems: Applications and Research Challenges

Recommender systems are assisting users in the process of identifying items that fulfill their wishes and needs. These systems are successfully applied in different e-commerce settings, for example, to the recommendation of news, movies, music, books, and digital cameras. The major goal of this book chapter is to discuss new and upcoming applications of recommendation technologies and to provide an outlook on major characteristics of future technological developments. Based on a literature analysis, we discuss new and upcoming applications in domains such as software engineering, data and knowledge engineering, configurable items, and persuasive technologies. Thereafter we sketch major properties of the next generation of recommendation technologies.

[1]  Juan Carlos Augusto,et al.  Ambient Intelligence—the Next Step for Artificial Intelligence , 2008, IEEE Intelligent Systems.

[2]  Leilani Battle,et al.  Building the Internet of Things Using Rfid , 2009 .

[3]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[4]  Shawn P. Curley,et al.  Recommender systems, consumer preferences, and anchoring effects , 2011, RecSys 2011.

[5]  Nicholas Jing Yuan,et al.  T-Finder: A Recommender System for Finding Passengers and Vacant Taxis , 2013, IEEE Transactions on Knowledge and Data Engineering.

[6]  John Riedl,et al.  Recommender systems: from algorithms to user experience , 2012, User Modeling and User-Adapted Interaction.

[7]  Henry Chesbrough,et al.  Open Innovation: The New Imperative for Creating and Profiting from Technology , 2003 .

[8]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[9]  Shlomo Berkovsky,et al.  Recommender algorithms in activity motivating games , 2010, RecSys '10.

[10]  Alexander Felfernig,et al.  Personalized diagnoses for inconsistent user requirements , 2011, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[11]  Gerhard Friedrich,et al.  Recommender Systems - An Introduction , 2010 .

[12]  Jane Cleland-Huang,et al.  Recommender Systems in Requirements Engineering , 2011, AI Mag..

[13]  Leilani Battle,et al.  Building the Internet of Things Using RFID: The RFID Ecosystem Experience , 2009, IEEE Internet Computing.

[14]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[15]  Alexander Felfernig,et al.  Status quo bias in configuration systems , 2011, IEA/AIE'11.

[16]  Brad A. Myers,et al.  The Design and Evaluation of User Interfaces for the RADAR Learning Personal Assistant , 2009, AI Mag..

[17]  Paulo J. G. Lisboa,et al.  The value of personalised recommender systems to e-business: a case study , 2008, RecSys '08.

[18]  Virginia E. Barker,et al.  Expert systems for configuration at Digital: XCON and beyond , 1989, Commun. ACM.

[19]  Jon Oberlander,et al.  User preferences can drive facial expressions: evaluating an embodied conversational agent in a recommender dialogue system , 2010, User Modeling and User-Adapted Interaction.

[20]  Alexander Felfernig,et al.  Towards Persuasive Technology for Software Development Environments: An Empirical Study , 2012, PERSUASIVE.

[21]  Gerhard Friedrich,et al.  An Integrated Environment for the Development of Knowledge-Based Recommender Applications , 2006, Int. J. Electron. Commer..

[22]  Janice Singer,et al.  Hipikat: a project memory for software development , 2005, IEEE Transactions on Software Engineering.

[23]  Ian Sommerville,et al.  Software Engineering, 8. Auflage , 2007, it : Informatik.

[24]  Martin P. Robillard,et al.  Recommendation Systems for Software Engineering , 2010, IEEE Software.

[25]  Alexander Felfernig,et al.  Utility-Based Repair of Inconsistent Requirements , 2009, IEA/AIE.

[26]  Alexander Felfernig,et al.  Group Decision Support for Requirements Negotiation , 2011, UMAP Workshops.

[27]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[28]  Egon L. van den Broek,et al.  Tune in to your emotions: a robust personalized affective music player , 2012, User Modeling and User-Adapted Interaction.

[29]  Vaibhav Patil,et al.  Query Recommendations for Interactive Database Exploration , 2015 .

[30]  Hao Jiang,et al.  Personalized online document, image and video recommendation via commodity eye-tracking , 2008, RecSys '08.

[31]  Yo-Ping Huang,et al.  Experiences with RFID-based interactive learning in museums , 2010, Int. J. Auton. Adapt. Commun. Syst..

[32]  Ayse Basar Bener,et al.  AI-Based Software Defect Predictors : Applications and Benefits in a Case Study , 2011 .

[33]  Judith Masthoff,et al.  Group Recommender Systems: Combining Individual Models , 2011, Recommender Systems Handbook.

[34]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[35]  Robin Burke,et al.  Knowledge-based recommender systems , 2000 .

[36]  Gerhard Friedrich,et al.  Introduction to Recommender Systems , 2022, Personalized Machine Learning.

[37]  Robert J. Walker,et al.  Approximate Structural Context Matching: An Approach to Recommend Relevant Examples , 2006, IEEE Transactions on Software Engineering.

[38]  Tiffany Ya Tang,et al.  The role of user mood in movie recommendations , 2010, Expert Syst. Appl..

[39]  Mik Kersten,et al.  Using task context to improve programmer productivity , 2006, SIGSOFT '06/FSE-14.

[40]  John Riedl,et al.  Techlens: a researcher's desktop , 2007, RecSys '07.

[41]  Martin Ester,et al.  CrimeWalker: a recommendation model for suspect investigation , 2011, RecSys '11.

[42]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[43]  Alexander Felfernig,et al.  An efficient diagnosis algorithm for inconsistent constraint sets , 2011, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[44]  Alexander Felfernig,et al.  Empirical Knowledge Engineering: Cognitive Aspects in the Development of Constraint-Based Recommenders , 2010, IEA/AIE.

[45]  Walid Maalej,et al.  Potentials and challenges of recommendation systems for software development , 2008, RSSE '08.

[46]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[47]  Alexander Felfernig,et al.  Constraint-based recommender systems: technologies and research issues , 2008, ICEC.

[48]  Aditya G. Parameswaran,et al.  Information seeking , 2011, Commun. ACM.

[49]  Yehuda Koren,et al.  Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition , 2008, KDD 2008.

[50]  Andrew E. Fano,et al.  Personal choice point: helping users visualize what it means to buy a BMW , 2003, IUI '03.

[51]  Carl A. Gunter,et al.  Collaborative Recommender Systems for Building Automation , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[52]  Carlos Delgado Kloos,et al.  A Collaborative Recommender System Based on Space-Time Similarities , 2010, IEEE Pervasive Computing.

[53]  Justin Donaldson,et al.  The Big Promise of Recommender Systems , 2011, AI Mag..

[54]  Dietmar Jannach,et al.  SAT: A Web-Based Interactive Advisor for Investor-Ready Business Plans , 2007, ICE-B.

[55]  Dirk Thorleuchter,et al.  Mining ideas from textual information , 2010, Expert Syst. Appl..

[56]  Loren Terveen,et al.  Beyond Recommender Systems: Helping People Help Each Other , 2001 .

[57]  Martin Wiesner,et al.  Adapting recommender systems to the requirements of personal health record systems , 2010, IHI.

[58]  Anastasis D. Petrou Review of “Persuasive technology: Using computers to change what we think and do by B. J. Fogg” Morgan Kaufmann, 2003 , 2003 .

[59]  Harri Oinas-Kukkonen,et al.  Influencing Individually: Fusing Personalization and Persuasion , 2012, TIIS.

[60]  B. J. Fogg,et al.  Persuasive technology: using computers to change what we think and do , 2002, UBIQ.

[61]  Maryam Ramezani,et al.  Matching Recommendation Technologies and Domains , 2011, Recommender Systems Handbook.

[62]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[63]  Michael Roberts,et al.  Collaborative Filtering Is Not Enough? Experiments with a Mixed-Model Recommender for Leisure Activities , 2009, UMAP.

[64]  Franz Lehner,et al.  Requirements Engineering as a Success Factor in Software Projects , 2001, IEEE Softw..

[65]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[66]  Youri van Pinxteren,et al.  Deriving a recipe similarity measure for recommending healthful meals , 2011, IUI '11.

[67]  Markus Zanker,et al.  Constraint-Based Recommendation for Software Project Effort Estimation , 2010 .

[68]  Alexander Felfernig,et al.  CoreDiag: Eliminating Redundancy in Constraint Sets , 2011 .

[69]  Young Park,et al.  A time-based approach to effective recommender systems using implicit feedback , 2008, Expert Syst. Appl..

[70]  John Riedl,et al.  Is seeing believing?: how recommender system interfaces affect users' opinions , 2003, CHI '03.

[71]  Daniel Sabin,et al.  Product Configuration Frameworks - A Survey , 1998, IEEE Intell. Syst..

[72]  Ronald Chung,et al.  Integrated personal recommender systems , 2007, ICEC.

[73]  Georg Groh,et al.  Team recommendation in open innovation networks , 2009, RecSys '09.

[74]  Elisabeth André,et al.  MED-StyleR: METABO diabetes-lifestyle recommender , 2010, RecSys '10.

[75]  Alexander Felfernig,et al.  Recommendation Technologies for Configurable Products , 2011, AI Mag..

[76]  Michela Bertolotto,et al.  RecoMap: an interactive and adaptive map-based recommender , 2010, SAC '10.

[77]  Mel Ó Cinnéide,et al.  Rascal: A Recommender Agent for Agile Reuse , 2005, Artificial Intelligence Review.

[78]  Charles J. Petrie,et al.  Semantic Email Addressing: The Semantic Web Killer App? , 2009, IEEE Internet Computing.

[79]  Alexander Felfernig,et al.  Reducing the Entry Threshold of AAL Systems: Preliminary Results from Casa Vecchia , 2012, ICCHP.

[80]  David C. Wilson,et al.  SmartChoice: An Online Recommender System to Support Low-Income Families in Public School Choice , 2009, AI Mag..

[81]  Farshad Fotouhi,et al.  TupleRecommender: A Recommender System for Relational Databases , 2011, 2011 22nd International Workshop on Database and Expert Systems Applications.

[82]  Jennifer Golbeck,et al.  Computing with Social Trust , 2008, Human-Computer Interaction Series.

[83]  Nitesh V. Chawla,et al.  Reliable medical recommendation systems with patient privacy , 2010, IHI 2010.