Development of a New 2 DOF Lightweight Wrist for the Humanoid Robot ARMAR

The mechatronic design of a humanoid robot is fundamentally different from that of industrial robots. Industrial robots generally have to meet requirements such as mechanical stiffness, accuracy and high velocities. The key goal for this humanoid robot is not accuracy, but the ability to cooperate with humans. In order to enable a robot to interact with humans, high standards are set for sensors and control of its movements. The robot’s kinematic properties and range of movements must be adjusted to humans and their environment (Schafer, 2000).

[1]  Jan-Anders E. Månson,et al.  Optimization of hybrid thermoplastic composite structures using surrogate models and genetic algorithms , 2007 .

[2]  H. Gea,et al.  Optimal orientation of orthotropic materials using an energy based method , 1998 .

[3]  Jun-Ho Oh,et al.  Mechanical design of humanoid robot platform KHR-3 (KAIST Humanoid Robot 3: HUBO) , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[4]  Ravi Vaidyanathan,et al.  IEEE International Conference on Intelligent Robots and Systems , 2011, IROS 2011.

[5]  Sven Brudniok Methodische Entwicklung hochintegrierter mechatronischer Systeme am Beispiel eines humanoiden Roboters , 2007 .

[6]  Albert Albers,et al.  Upper Body of a new Humanoid Robot - the Design of ARMAR III , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[7]  George Z. Voyiadjis,et al.  Mechanics of Composite Materials with MATLAB , 2005 .

[8]  Pauli Pedersen,et al.  Optimal Orientation of Anisotropic Materials Optimal Distribution of Anisotropic Materials Optimal Shape Design with Anisotropic Materials Optimal Design for a Class of Non-Linear Elasticity , 1993 .

[9]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[10]  Albert Albers,et al.  Integrated Topology and Fiber Optimization for 3-Dimensional Composites , 2008 .

[11]  Rolf Wirhed,et al.  Sport-Anatomie und Bewegungslehre , 1984 .

[12]  Albert Albers,et al.  Handling Complexity - A Methodological Approach Comprising Process and Knowledge Management , 2008 .

[13]  Zafer Gürdal,et al.  Combined topology and fiber path design of composite layers using cellular automata , 2005 .

[14]  Alin Albu-Schäffer,et al.  The DLR lightweight robot: design and control concepts for robots in human environments , 2007, Ind. Robot.

[15]  Mark E. Rosheim,et al.  Robot Wrist Actuators , 1989 .

[16]  M. Zhou,et al.  Recent Developments in the Commercial Implementation of Topology Optimization , 2006 .

[17]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[18]  M. W. Hyer,et al.  Innovative design of composite structures: Use of curvilinear fiber format to improve structural efficiency , 1987 .

[19]  Markus Ledermann,et al.  Beiträge zur Optimierung von Faserverbunden nach dem Vorbild der Natur , 2003 .