Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method

Abstract We present efficient, second-order accurate and adaptive finite-difference methods to solve the regularized, strongly anisotropic Cahn–Hilliard equation in 2D and 3D. When the surface energy anisotropy is sufficiently strong, there are missing orientations in the equilibrium level curves of the diffuse interface solutions, corresponding to those missing from the sharp interface Wulff shape, and the anisotropic Cahn–Hilliard equation becomes ill-posed. To regularize the equation, a higher-order derivative term is added to the energy. This leads to a sixth-order, nonlinear parabolic equation for the order parameter. An implicit time discretization is used to remove the high-order time step stability constraints. Dynamic block-structured Cartesian mesh refinement is used to highly resolve narrow interfacial layers. A multilevel, nonlinear multigrid method is used to solve the nonlinear equations at the implicit time level. One of the keys to the success of the method is the treatment of the anisotropic term. This term is discretized in conservation form in space and is discretized fully implicitly in time. Numerical simulations are presented that confirm the accuracy, efficiency and stability of the scheme. We study the dynamics of interfaces under strong anisotropy and compare near-equilibrium diffuse interface solutions to the sharp interface Wulff shapes in 2D and 3D. We also simulate large-scale coarsening of a corrugated surface (in 3D) evolving by anisotropic surface diffusion. We show the emergence of long-range order during coarsening and an interesting mechanism of ordered coarsening.

[1]  Conyers Herring,et al.  Some Theorems on the Free Energies of Crystal Surfaces , 1951 .

[2]  Axel Voigt,et al.  A numerical scheme for regularized anisotropic curve shortening flow , 2006, Appl. Math. Lett..

[3]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[4]  Harald Garcke,et al.  Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid , 2005, Math. Comput..

[5]  Martin Burger,et al.  A level set approach to anisotropic flows with curvature regularization , 2007, J. Comput. Phys..

[6]  John Lowengrub,et al.  Microstructural Evolution in Inhomogeneous Elastic Media , 1997 .

[7]  John W. Barrett,et al.  Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..

[8]  Axel Voigt,et al.  Facet formation and coarsening modeled by a geometric evolution law for epitaxial growth , 2005 .

[9]  Peter W. Voorhees,et al.  Ordered growth of nanocrystals via a morphological instability , 2002 .

[10]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[11]  Martin Burger,et al.  Numerical simulation of anisotropic surface diffusion with curvature-dependent energy , 2005 .

[12]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[14]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[15]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[16]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[17]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[18]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[20]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[21]  P. Voorhees,et al.  Faceting of a growing crystal surface by surface diffusion. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  John W. Cahn,et al.  Diffuse interfaces with sharp corners and facets: phase field models with strongly anisotropic surfaces , 1998 .

[23]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[24]  W. W. Mullins,et al.  Proof that the Two‐Dimensional Shape of Minimum Surface Free Energy is Convex , 1962 .

[25]  E. Wagner International Series of Numerical Mathematics , 1963 .

[26]  Morton E. Gurtin,et al.  A regularized equation for anisotropic motion-by-curvature , 1992 .

[27]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[28]  Shenyang Y. Hu,et al.  A phase-field model for evolving microstructures with strong elastic inhomogeneity , 2001 .

[29]  Charles M. Elliott,et al.  The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.

[30]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[31]  Lisa L. Lowe,et al.  Multigrid elliptic equation solver with adaptive mesh refinement , 2005 .

[32]  Daniel F. Martin,et al.  A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations , 2000 .

[33]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[34]  Axel Voigt,et al.  A discrete scheme for regularized anisotropic surface diffusion: a 6th order geometric evolution equation , 2005 .

[35]  Alexander A. Nepomnyashchy,et al.  Model for faceting in a kinetically controlled crystal growth , 1999 .

[36]  Stephen J. Watson,et al.  Crystal Growth, Coarsening and the Convective Cahn—Hilliard Equation , 2003 .

[37]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[38]  Alexander A. Nepomnyashchy,et al.  A convective Cahn-Hilliard model for the formation of facets and corners in crystal growth , 1998 .

[39]  Peter W Voorhees,et al.  A phase-field model for highly anisotropic interfacial energy , 2001 .

[40]  Wei Lu,et al.  Ordering of nanovoids in an anisotropic solid driven by surface misfit , 2005 .

[41]  M. Miksis,et al.  Evolution of material voids for highly anisotropic surface energy , 2004 .

[42]  A. A. Wheeler,et al.  Phase-field theory of edges in an anisotropic crystal , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Axel Voigt,et al.  Surface evolution of elastically stressed films under deposition by a diffuse interface model , 2006, J. Comput. Phys..

[44]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[45]  H. Frieboes,et al.  Computer simulation of glioma growth and morphology , 2007, NeuroImage.

[46]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[47]  D. Moldovan,et al.  Interfacial coarsening dynamics in epitaxial growth with slope selection , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  R. Howie,et al.  Crystal growth , 1982, Nature.

[49]  Brian J Spencer,et al.  Asymptotic solutions for the equilibrium crystal shape with small corner energy regularization. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Steven M. Wise,et al.  Quantum dot formation on a strain-patterned epitaxial thin film , 2005 .

[51]  Morton E. Gurtin,et al.  Interface Evolution in Three Dimensions¶with Curvature-Dependent Energy¶and Surface Diffusion:¶Interface-Controlled Evolution, Phase Transitions, Epitaxial Growth of Elastic Films , 2002 .

[52]  Martin Siegert,et al.  COARSENING DYNAMICS OF CRYSTALLINE THIN FILMS , 1998 .

[53]  Scott A Norris,et al.  Scaling theory and morphometrics for a coarsening multiscale surface, via a principle of maximal dissipation. , 2006, Physical review letters.

[54]  Harald Garcke,et al.  The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies , 2001 .

[55]  A. A. Wheeler Cahn–Hoffman ξ-Vector and Its Relation to Diffuse Interface Models of Phase Transitions , 1999 .

[56]  Robert F. Sekerka,et al.  Analytical criteria for missing orientations on three-dimensional equilibrium shapes , 2005 .

[57]  Harald Garcke,et al.  Numerical approximation of the Cahn-Larché equation , 2005, Numerische Mathematik.

[58]  Yoshikazu Giga,et al.  Equations with Singular Diffusivity , 1998 .

[59]  Felix Otto,et al.  Coarsening dynamics of the convective Cahn-Hilliard equation , 2003 .

[60]  Jeffrey W. Bullard,et al.  Computational and mathematical models of microstructural evolution , 1998 .

[61]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[62]  F. Campelo,et al.  Dynamic model and stationary shapes of fluid vesicles , 2006, The European physical journal. E, Soft matter.