Precipitation behavior of Fe2Nb Laves phase on grain boundaries in austenitic heat resistant steels

[1]  Zhihong Zhong,et al.  A new wrought Ni–Fe-base superalloy for advanced ultra-supercritical power plant applications beyond 700 °C☆ , 2013 .

[2]  Brian A. Baker,et al.  Nickel Base Superalloys for Next Generation Coal Fired AUSC Power Plants , 2013 .

[3]  G. Chai,et al.  Creep and LCF Behaviors of Newly Developed Advanced Heat Resistant Austenitic Stainless Steel for A-USC , 2013 .

[4]  Fujio Abe,et al.  Effect of Boron on Microstructure and Creep Strength ofAdvanced Ferritic Power Plant Steels , 2011 .

[5]  N. Takata,et al.  Novel Concept of Creep Strengthening Mechanism using Grain Boundary Fe 2 Nb Laves Phase in Austenitic Heat Resistant Steel , 2011 .

[6]  C. Liu,et al.  Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates , 2008 .

[7]  Fujio Abe,et al.  Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants , 2008, Science and technology of advanced materials.

[8]  John Hald,et al.  Microstructure and long-term creep properties of 9–12% Cr steels , 2008 .

[9]  John Hald,et al.  Precipitate Stability in Creep Resistant Ferritic Steels-Experimental Investigations and Modelling , 2003 .

[10]  J. Jonas,et al.  The non-equilibrium segregation of boron on original and moving austenite grain boundaries , 2002 .

[11]  H. Kestenbach,et al.  Effect of Fe2Nb precipitation on the creep properties of niobium-bearing austenitic stainless steels , 1984 .