Correction of the photoelectron heating ef fi ciency within the global ionosphere ‐ thermosphere model using Retrospective Cost Model

Many physics-based models are used to study and monitor the terrestrial upper atmosphere. Each of these models has internal parameterizations that introduce bias if they are not tuned for a specific set of run conditions. This study uses Retrospective Cost Model Refinement (RCMR) to remove internal model bias in the Global Ionosphere Thermosphere Model (GITM) through parameter estimation. RCMR is a low-cost method that uses the error between truth data and a biased estimate to improve the biased model. Neutral mass density measurements are used to estimate an appropriate photoelectron heating efficiency, which is shown to drive the modeled thermosphere closer to the real thermosphere. Observations from the Challenging Mini-Payload (CHAMP) satellite taken under active and quiet solar conditions show that RCMR successfully drives the GITM thermospheric mass density to the observed values, removing model bias and appropriately accounting for missing physical processes in the thermospheric heating through the photoelectron heating efficiency. & 2015 Elsevier Ltd. All rights reserved.

[1]  Dennis S. Bernstein,et al.  Minimum modelling retrospective cost adaptive control of uncertain Hammerstein systems using auxiliary nonlinearities , 2014, Int. J. Control.

[2]  Dennis S. Bernstein,et al.  Data assimilation and driver estimation for the Global Ionosphere-Thermosphere Model using the Ensemble Adjustment Kalman Filter , 2013 .

[3]  Tomoko Matsuo,et al.  Thermospheric mass density specification using an ensemble Kalman filter , 2013 .

[4]  Dennis S. Bernstein,et al.  Retrospective Cost Model Reference Adaptive Control for Nonminimum-Phase Systems , 2012 .

[5]  Xiaoqing Pi,et al.  CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations , 2012 .

[6]  Dennis S. Bernstein,et al.  Retrospective Cost Adaptive Control of Spacecraft Attitude , 2012 .

[7]  T. Fuller‐Rowell,et al.  Data assimilation of thermospheric mass density , 2012 .

[8]  A. Burns,et al.  Solar flare impacts on ionospheric electrodyamics , 2012 .

[9]  D. Gell,et al.  Simulating the one-dimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape , 2011 .

[10]  A. D'Amato,et al.  Retrospective Cost Adaptive Control for Systems with Unknown Nonminimum-Phase Zeros , 2011 .

[11]  A. Ridley,et al.  The effects of different solar flare characteristics on the global thermosphere , 2011 .

[12]  Dennis S. Bernstein,et al.  Retrospective‐cost‐based adaptive model refinement for the ionosphere and thermosphere , 2011, Stat. Anal. Data Min..

[13]  S. Solomon,et al.  Flare location on the solar disk: Modeling the thermosphere and ionosphere response , 2010 .

[14]  Dennis S. Bernstein,et al.  Investigation of cumulative retrospective cost adaptive control for missile application , 2010 .

[15]  S. Zalesak,et al.  Three-dimensional simulation of equatorial spread-F with meridional wind effects , 2009 .

[16]  A. Ridley,et al.  Modeling the thermospheric response to solar flares , 2008 .

[17]  D.S. Bernstein,et al.  Localized data assimilation in the ionosphere-thermosphere using a sampled-data unscented Kalman filter , 2008, 2008 American Control Conference.

[18]  Thomas N. Woods,et al.  Flare Irradiance Spectral Model (FISM): Flare component algorithms and results , 2008 .

[19]  Thomas N. Woods,et al.  Flare Irradiance Spectral Model (FISM): Daily component algorithms and results , 2007 .

[20]  Gábor Tóth,et al.  The Global Ionosphere-Thermosphere Model , 2006 .

[21]  Xiaoqing Pi,et al.  A performance evaluation of the operational Jet Propulsion Laboratory/University of Southern California Global Assimilation Ionospheric Model (JPL/USC GAIM) , 2005 .

[22]  S. Solomon,et al.  Solar extreme‐ultraviolet irradiance for general circulation models , 2005 .

[23]  P. Richards On the increases in nitric oxide density at midlatitudes during ionospheric storms , 2004 .

[24]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[25]  C. Reigber,et al.  CHAMP mission status , 2002 .

[26]  Timothy Fuller-Rowell,et al.  An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere‐thermosphere model with coupled electrodynamics , 2001 .

[27]  R. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[28]  T. Fuller‐Rowell,et al.  Intercomparison of physical models and observations of the ionosphere , 1998 .

[29]  D. Weimer,et al.  A flexible, IMF dependent model of high-latitude electric potentials having “Space Weather” applications , 1996 .

[30]  Raymond G. Roble,et al.  A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30–500 km) , 1994 .

[31]  Raymond G. Roble,et al.  A thermosphere/ionosphere general circulation model with coupled electrodynamics , 1992 .

[32]  P. Richards An improved algorithm for determining neutral winds from the height of the F2 peak electron density , 1991 .

[33]  Paul G. Richards,et al.  Mid‐ and low‐latitude model of thermospheric emissions: 1. O+ (²P) 7320 Å and N2 (2P) 3371 Å , 1990 .

[34]  Raymond G. Roble,et al.  A coupled thermosphere/ionosphere general circulation model , 1988 .

[35]  Timothy Fuller-Rowell,et al.  Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data , 1987 .

[36]  R. Dickinson,et al.  Thermospheric general circulation with coupled dynamics and composition , 1984 .

[37]  T. Fuller‐Rowell,et al.  A Three-Dimensional Time-Dependent Global Model of the Thermosphere , 1980 .

[38]  Dennis S. Bernstein,et al.  Retrospective Cost Optimization for Adaptive State Estimation, Input Estimation, and Model Refinement , 2013, ICCS.