OTU Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction Analysis

[1]  Kay Hofmann,et al.  OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin , 2013, Cell.

[2]  M. Glickman,et al.  Mixed-linkage ubiquitin chains send mixed messages. , 2013, Structure.

[3]  S. Freund,et al.  Assembly, analysis and architecture of atypical ubiquitin chains , 2013, Nature Structural &Molecular Biology.

[4]  M. Rapé,et al.  The Colossus of ubiquitylation: decrypting a cellular code. , 2013, Molecular cell.

[5]  A. Scholten,et al.  On Terminal Alkynes That Can React with Active-Site Cysteine Nucleophiles in Proteases , 2013, Journal of the American Chemical Society.

[6]  Hongbo Hu,et al.  Otud7b controls noncanonical NF-κB activation via deubiquitination of TRAF3 , 2013, Nature.

[7]  David Klenerman,et al.  Ubiquitin chain conformation regulates recognition and activity of interacting proteins , 2012, Nature.

[8]  T. Sixma,et al.  The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension , 2012, The EMBO journal.

[9]  David Komander,et al.  Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages , 2012, Nature Reviews Molecular Cell Biology.

[10]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[11]  M. Glover Faculty Opinions recommendation of The mechanism of OTUB1-mediated inhibition of ubiquitination. , 2012 .

[12]  D. Durocher,et al.  OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. , 2012, Molecular cell.

[13]  V. Dixit,et al.  Phosphorylation-dependent activity of the deubiquitinase DUBA , 2012, Nature Structural &Molecular Biology.

[14]  J. Coulson,et al.  Cellular functions of the DUBs , 2012, Journal of Cell Science.

[15]  H. Ovaa,et al.  A General Chemical Ligation Approach Towards Isopeptide-Linked Ubiquitin and Ubiquitin-Like Assay Reagents , 2011, Chembiochem : a European journal of chemical biology.

[16]  J. Chin,et al.  An Ankyrin-repeat ubiquitin binding domain determines TRABID’s specificity for atypical ubiquitin chains , 2011, Nature Structural &Molecular Biology.

[17]  T. Sixma,et al.  The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. , 2011, Chemistry & biology.

[18]  D. O. Morgan,et al.  Protein-linked Ubiquitin Chain Structure Restricts Activity of Deubiquitinating Enzymes* , 2011, The Journal of Biological Chemistry.

[19]  M. Rapé,et al.  K11-linked ubiquitin chains as novel regulators of cell division. , 2011, Trends in cell biology.

[20]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[21]  K. Iwai Linear polyubiquitin chains , 2011, Cell cycle.

[22]  Sebastian A. Wagner,et al.  A Proteome-wide, Quantitative Survey of In Vivo Ubiquitylation Sites Reveals Widespread Regulatory Roles* , 2011, Molecular & Cellular Proteomics.

[23]  M. Rapé,et al.  Regulation of ubiquitin chain initiation to control the timing of substrate degradation. , 2011, Molecular cell.

[24]  Keith D Wilkinson,et al.  Polyubiquitin binding and cross‐reactivity in the USP domain deubiquitinase USP21 , 2011, EMBO reports.

[25]  Anthony W. Purcell,et al.  Linear ubiquitination prevents inflammation and regulates immune signalling , 2011, Nature.

[26]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[27]  A. Weissman,et al.  Ubiquitylation in ERAD: Reversing to Go Forward? , 2011, PLoS biology.

[28]  J. Chin,et al.  Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains , 2011, Proceedings of the National Academy of Sciences.

[29]  A. Gingras,et al.  Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1 , 2010, Nature.

[30]  David Komander,et al.  Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne , 2010, Nature Structural &Molecular Biology.

[31]  I. Wertz,et al.  A20: from ubiquitin editing to tumour suppression , 2010, Nature Reviews Cancer.

[32]  Fabrice Gorrec,et al.  The MORPHEUS protein crystallization screen , 2009, Journal of applied crystallography.

[33]  H. Ploegh,et al.  The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. , 2009, Molecular cell.

[34]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[35]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[36]  Keith D Wilkinson,et al.  Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. , 2009, Annual review of biochemistry.

[37]  Hyung cheol Kim,et al.  Polyubiquitination by HECT E3s and the Determinants of Chain Type Specificity , 2009, Molecular and Cellular Biology.

[38]  Troels Z. Kristiansen,et al.  K63‐specific deubiquitination by two JAMM/MPN+ complexes: BRISC‐associated Brcc36 and proteasomal Poh1 , 2009, The EMBO journal.

[39]  Tao Wang,et al.  Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. , 2009, Journal of molecular biology.

[40]  E. Fiebiger,et al.  Structural basis and specificity of human otubain 1-mediated deubiquitination. , 2009, The Biochemical journal.

[41]  Zhijian J. Chen,et al.  Nonproteolytic functions of ubiquitin in cell signaling. , 2009, Molecular cell.

[42]  J. Mikolajczyk,et al.  Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes). , 2008, The Biochemical journal.

[43]  R. Shiekhattar,et al.  Structural Basis for Ubiquitin Recognition by the Otu1 Ovarian Tumor Domain Protein* , 2008, Journal of Biological Chemistry.

[44]  Fei Long,et al.  BALBES: a molecular-replacement pipeline , 2007, Acta crystallographica. Section D, Biological crystallography.

[45]  Serge X. Cohen,et al.  Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7 , 2008, Nature Protocols.

[46]  Shannon L. Taylor,et al.  Ovarian Tumor Domain-Containing Viral Proteases Evade Ubiquitin- and ISG15-Dependent Innate Immune Responses , 2007, Cell Host & Microbe.

[47]  E. Pietras,et al.  A Deubiquitinase That Regulates Type I Interferon Production , 2007, Science.

[48]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[49]  David Alderton,et al.  A versatile ligation-independent cloning method suitable for high-throughput expression screening applications , 2007, Nucleic acids research.

[50]  S. Jentsch,et al.  Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. , 2006, Molecular cell.

[51]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[52]  M. Zweckstetter,et al.  Mars - robust automatic backbone assignment of proteins , 2004, Journal of biomolecular NMR.

[53]  G. Warren,et al.  VCIP135 acts as a deubiquitinating enzyme during p97–p47-mediated reassembly of mitotic Golgi fragments , 2004, The Journal of cell biology.

[54]  F. Netter,et al.  Supplemental References , 2002, We Came Naked and Barefoot.

[55]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[56]  H. Ploegh,et al.  Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. , 2002, Chemistry & biology.

[57]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.