Entanglement and algebraic independence in fermion systems

In the case of systems composed of identical particles, a typical instance in quantum statistical mechanics, the standard approach to separability and entanglement ought to be reformulated and rephrased in terms of correlations between operators from subalgebras localized in spatially disjoint regions. While this algebraic approach is straightforward for bosons, in the case of fermions it is subtler since one has to distinguish between micro-causality, that is the anti-commutativity of the basic creation and annihilation operators, and algebraic independence that is the commutativity of local observables. We argue that a consistent algebraic formulation of separability and entanglement should be compatible with micro-causality rather than with algebraic independence.

[1]  Lorenza Viola,et al.  A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables , 2005 .

[2]  Eugene P. Wigner,et al.  The Intrinsic Parity of Elementary Particles , 1952 .

[3]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[4]  H. Narnhofer The role of transposition and CPT operation for entanglement , 2003 .

[5]  Many-particle entanglement in two-component Bose-Einstein condensates , 2002, cond-mat/0205369.

[6]  Fabio Benatti,et al.  ENTANGLED IDENTICAL PARTICLES AND NOISE , 2011, 1107.5071.

[7]  Bei Zeng,et al.  Entanglement in a two-identical-particle system , 2001 .

[8]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[9]  H M Wiseman,et al.  Entanglement of indistinguishable particles shared between two parties. , 2003, Physical review letters.

[10]  Lorenza Viola,et al.  A subsystem-independent generalization of entanglement. , 2004, Physical review letters.

[11]  Michael M. Wolf,et al.  Entanglement in fermionic systems , 2007, 0705.1103.

[12]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[13]  J. Cirac,et al.  Pairing in fermionic systems: A quantum-information perspective , 2008, 0810.4772.

[14]  D. Buchholz,et al.  Quantum statistics and locality , 2004, quant-ph/0403149.

[15]  L. You,et al.  Quantum correlations in two-boson wave functions , 2001 .

[16]  J. Ignacio Cirac,et al.  Quantum entanglement theory in the presence of superselection rules (15 pages) , 2004 .

[17]  Joint Extension of States of Subsystems for a CAR System , 2003, math-ph/0306044.

[18]  U. Marzolino,et al.  Bipartite entanglement in systems of identical particles: The partial transposition criterion , 2012, 1202.2993.

[19]  Roberto Floreanini,et al.  Entanglement of Identical Particles , 2014, Open Syst. Inf. Dyn..

[20]  Entanglement of two-mode Bose-Einstein condensates , 2002, quant-ph/0209122.

[21]  Quantum entanglement in second-quantized condensed matter systems , 2002, quant-ph/0204058.

[22]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[23]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[24]  A. P. Balachandran,et al.  Entanglement and particle identity: a unifying approach. , 2013, Physical review letters.

[25]  Marina Schroder,et al.  Pct Spin And Statistics And All That , 2016 .

[26]  Mark R. Dowling,et al.  Entanglement of indistinguishable particles in condensed-matter physics (12 pages) , 2006 .

[27]  U. Marzolino,et al.  Entanglement robustness and geometry in systems of identical particles , 2012, 1204.3746.

[28]  Fernando de Melo,et al.  Entanglement of identical particles and the detection process , 2009, 0902.1684.

[29]  U. Marzolino,et al.  Sub-shot-noise quantum metrology with entangled identical particles , 2010, 1001.3313.

[30]  Fabio Benatti,et al.  Entanglement and squeezing with identical particles: ultracold atom quantum metrology , 2011 .

[31]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[32]  M. Kus,et al.  Entanglement for multipartite systems of indistinguishable particles , 2010, 1012.0758.

[33]  S. Lloyd,et al.  Quantum tensor product structures are observable induced. , 2003, Physical Review Letters.

[34]  H. Moriya On Fermion Grading Symmetry for Quasi-Local Systems , 2004, math-ph/0410020.

[35]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[36]  S. J. Summers On the Independence of Local Algebras in Quantum Field Theory , 1990 .

[37]  J. Ignacio Cirac,et al.  Quantum correlations in two-fermion systems , 2001 .