Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights

This paper deals with a general combinatorial optimization problem in which closed intervals and fuzzy intervals model uncertain element weights. The notion of a deviation interval is introduced, which allows us to characterize the optimality and the robustness of solutions and elements. The problem of computing deviation intervals is addressed and some new complexity results in this field are provided. Possibility theory is then applied to generalize a deviation interval and a solution concept to fuzzy ones.

[1]  Stefan Chanas,et al.  On the hardness of evaluating criticality of activities in a planar network with duration intervals , 2003, Oper. Res. Lett..

[2]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust shortest path problem with interval data , 2004, Oper. Res. Lett..

[3]  Hande Yaman,et al.  The Robust Shortest Path Problem with Interval Data , 2012 .

[4]  Daniel Vanderpooten,et al.  Complexity of the Min-Max (Regret) Versions of Cut Problems , 2005, ISAAC.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[7]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[8]  Masahiro Inuiguchi On Possibilistic/Fuzzy Optimization , 2007, IFSA.

[9]  Pawel Zielinski,et al.  The computational complexity of the criticality problems in a network with interval activity times , 2002, Eur. J. Oper. Res..

[10]  Didier Dubois,et al.  Interval Analysis in Scheduling , 2005, CP.

[11]  Igor Averbakh,et al.  On the complexity of minmax regret linear programming , 2005, Eur. J. Oper. Res..

[12]  Adam Kasperski,et al.  On combinatorial optimization problems on matroids with uncertain weights , 2007, Eur. J. Oper. Res..

[13]  David Eppstein,et al.  Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..

[14]  Masahiro Inuiguchi,et al.  Minimax regret solution to linear programming problems with an interval objective function , 1995 .

[15]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[16]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[17]  Shinkoh Okada,et al.  Fuzzy shortest path problems incorporating interactivity among paths , 2004, Fuzzy Sets Syst..

[18]  Harry M. Markowitz,et al.  A note on shortest path, assignment, and transportation problems , 1963 .

[19]  Masahiro Inuiguchi,et al.  Robust optimization under softness in a fuzzy linear programming problem , 1998, Int. J. Approx. Reason..

[20]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[21]  Daniel Vanderpooten,et al.  Complexity of the min-max and min-max regret assignment problems , 2005, Oper. Res. Lett..

[22]  Adam Kasperski,et al.  An approximation algorithm for interval data minmax regret combinatorial optimization problems , 2006, Inf. Process. Lett..

[23]  Pawel Zielinski,et al.  On computing the latest starting times and floats of activities in a network with imprecise durations , 2005, Fuzzy Sets Syst..

[24]  Didier Dubois,et al.  Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge , 2003, Eur. J. Oper. Res..

[25]  Jerzy Kamburowski,et al.  Minimum flows in (s, t) planar networks , 1991, Networks.

[26]  Hande Yaman,et al.  The robust spanning tree problem with interval data , 2001, Oper. Res. Lett..

[27]  Pascal Van Hentenryck,et al.  On the complexity of the robust spanning tree problem with interval data , 2004, Oper. Res. Lett..

[28]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[29]  Didier Dubois,et al.  On latest starting times and floats in activity networks with ill-known durations , 2003, Eur. J. Oper. Res..