A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials

[1]  D. Noble,et al.  Anion conductance of cardiac muscle , 1961, The Journal of physiology.

[2]  E. George,et al.  Solutions of the Hodgkin-Huxley equations for squid axon treated with tetraethylammonium and in potassium-rich media. , 1961, The Australian journal of experimental biology and medical science.

[3]  E. Carmeliet,et al.  Chloride ions and the membrane potential of Purkinje fibres , 1961, The Journal of physiology.

[4]  A. J. Brady,et al.  The sodium‐potassium hypothesis as the basis of electrical activity in frog ventricle , 1960, The Journal of physiology.

[5]  E. Johnson,et al.  Changes in polarisation resistance during the repolarisation phase of the rabbit ventricular action potential. , 1960, The Australian journal of experimental biology and medical science.

[6]  D. Noble Cardiac Action and Pacemaker Potentials based on the Hodgkin-Huxley Equations , 1960, Nature.

[7]  A. Hodgkin,et al.  The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres , 1960, The Journal of physiology.

[8]  R. FitzHugh Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations , 1960, The Journal of general physiology.

[9]  I. Tasaki,et al.  Demonstration of two stable states of the nerve membrane in potassium‐rich media , 1959, The Journal of physiology.

[10]  A. Huxley ION MOVEMENTS DURING NERVE ACTIVITY , 1959, Annals of the New York Academy of Sciences.

[11]  A. Huxley,et al.  LOCAL ACTIVATION OF MUSCLE , 1959, Annals of the New York Academy of Sciences.

[12]  J. R. Segal An Anodal Threshold Phenomenon in the Squid Giant Axon , 1958, Nature.

[13]  Ichiji Tasaki,et al.  DEMONSTRATION OF TWO STABLE POTENTIAL STATES IN THE SQUID GIANT AXON UNDER TETRAETHYLAMMONIUM CHLORIDE , 1957, The Journal of general physiology.

[14]  A. Hodgkin,et al.  The action of calcium on the electrical properties of squid axons , 1957, The Journal of physiology.

[15]  G. Palade,et al.  STUDIES ON THE ENDOPLASMIC RETICULUM : III. ITS FORM AND DISTRIBUTION IN STRIATED MUSCLE CELLS , 1957 .

[16]  O. Hutter,et al.  VAGAL AND SYMPATHETIC EFFECTS ON THE PACEMAKER FIBERS IN THE SINUS VENOSUS OF THE HEART , 1956, The Journal of general physiology.

[17]  S. Weidmann,et al.  Shortening of the cardiac action potential due to a brief injection of KCl following the onset of activity , 1956, The Journal of physiology.

[18]  H. A. Antosiewicz,et al.  Automatic Computation of Nerve Excitation , 1955 .

[19]  H. Ruska,et al.  The Function and Metabolism of Certain Insect Muscles in Relation to their Structure , 1955 .

[20]  S. Weidmann,et al.  The effect of the cardiac membrane potential on the rapid availability of the sodium‐carrying system , 1955, The Journal of physiology.

[21]  B. Hoffman,et al.  Effect of heart rate on cardiac membrane potentials and the unipolar electrogram. , 1954, The American journal of physiology.

[22]  K. Porter,et al.  An electron microscope study of sectioned breast muscle of the domestic fowl. , 1953, The American journal of anatomy.

[23]  S. Weidmann,et al.  The electrical constants of Purkinje fibres , 1952, The Journal of physiology.

[24]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[25]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[26]  A. Hodgkin,et al.  The components of membrane conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[27]  A. Hodgkin,et al.  The dual effect of membrane potential on sodium conductance in the giant axon of Loligo , 1952, The Journal of physiology.

[28]  B. Katz,et al.  An analysis of the end‐plate potential recorded with an intra‐cellular electrode , 1951, The Journal of physiology.

[29]  W. Gilson,et al.  Electrical characteristics of injury potentials. , 1951, The American journal of physiology.

[30]  S. Weidmann,et al.  Effect of current flow on the membrane potential of cardiac muscle , 1951, The Journal of physiology.

[31]  S. Weidmann,et al.  Cardiac resting and action potentials recorded with an intracellular electrode , 1951, The Journal of physiology.

[32]  R. Keynes,et al.  The ionic movements during nervous activity , 1951, The Journal of physiology.

[33]  A. Hodgkin,et al.  The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[34]  W. Gilson,et al.  Electrical characteristics of injuries to heart muscle. , 1947, The American journal of physiology.

[35]  A. Hodgkin,et al.  Resting and action potentials in single nerve fibres , 1945, The Journal of physiology.

[36]  H. Curtis,et al.  Membrane resting and action potentials from the squid giant axon , 1942 .

[37]  H. Curtis,et al.  MEMBRANE POTENTIAL OF THE SQUID GIANT AXON DURING CURRENT FLOW , 1941, The Journal of general physiology.

[38]  H. Curtis,et al.  Membrane action potentials from the squid giant axon , 1940 .

[39]  A. Hodgkin,et al.  Action Potentials Recorded from Inside a Nerve Fibre , 1939, Nature.

[40]  Erich Schütz,et al.  Elektrophysiologie des Herzens bei einphasischer Ableitung , 1936 .

[41]  John W. Carr,et al.  Error Bounds for the Runge-Kutta Single-Step Integration Process , 1958, JACM.

[42]  J. D. Robertson,et al.  Some features of the ultrastructure of reptilian skeletal muscle. , 1956, The Journal of biophysical and biochemical cytology.

[43]  E CORABOEUF,et al.  Temperature effects on the electrical activity of Purkinje fibres. , 1954, Helvetica physiologica et pharmacologica acta.

[44]  A. Hodgkin Ionic Currents Underlying Activity in the Giant Axon of the Squid , 1949 .