Pitting Corrosion Studies on Solution-Annealed Borated Type 304L Stainless Steel Using Electrochemical Noise Technique

The pitting corrosion resistance of Type 304L (UNS S30403) stainless steel (SS) with (1.2 wt%) and without boron in as-received and solution-annealed (1,423 K for 2 h and 4 h) conditions was evaluated using the electrochemical noise (EN) technique in neutral 0.5 M sodium chloride (NaCl) solution for 72 h at the corrosion potential (Ecorr). EN data were analyzed using visual records, statistical parameters, spectral analysis, and shot-noise parameters. Weibull and Gumbell plots were prepared to study the distribution of pitting and passivation events and metastable pit radii, respectively. Current transient analysis showed the maximum number of pit nucleation and metastable pitting events in an as-received specimen, which decreased gradually with solution annealing. Pit radii calculated using Gumbell distribution showed the lowest metastable pit radii in solution-annealed specimens compared to as-received specimens. Therefore, EN analysis of the data revealed the improvement in pitting corrosion resistance...

[1]  H. S. Khatak,et al.  Use of Electrochemical Noise (EN) Technique to Study the Effect of sulfate and Chloride Ions on Passivation and Pitting Corrosion Behavior of 316 Stainless Steel , 2007 .

[2]  G. Thompson,et al.  Interpretation of electrochemical noise generated by multiple electrodes , 2013 .

[3]  H. Tsuge,et al.  Introduction to Life Prediction of Industrial Plant Materials: Application of the Extreme Value Statistical Method for Corrosion Analysis , 1994 .

[4]  H. S. Khatak,et al.  Assessment of stress corrosion crack initiation and propagation in AISI type 316 stainless steel by electrochemical noise technique , 2006 .

[5]  R. P. George,et al.  Microbiologically Influenced Corrosion in UNS S31653: Detection and Analysis Using Electrochemical Noise Technique , 2011 .

[6]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[7]  S. Pyun,et al.  Stochastic approach to analysis of pitting corrosion of anodic oxide film on Al-1wt.%Si-0.5wt.%Cu alloy , 1993 .

[8]  A. Trueman Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements , 2005 .

[9]  U. Kamachi Mudali,et al.  Effects of laser surface melting on the pitting resistance of sensitized nitrogen-bearing type 316L stainless steel , 1998 .

[10]  G. Burstein,et al.  The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels , 2001 .

[11]  F. Caleyo,et al.  Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits , 2007 .

[12]  G. Frankel,et al.  Metastable Pitting of Stainless Steel , 1987 .

[13]  H. Man,et al.  Cavitation erosion and pitting corrosion behaviour of laser surface-melted martensitic stainless steel UNS S42000 , 2000 .

[14]  J. L. Hudson,et al.  Metastable Pitting of Aluminum and Criteria for the Transition to Stable Pit Growth , 1994 .

[15]  S. Pyun,et al.  Electrochemical noise analysis of corrosion of pure aluminium in alkaline solution in the presence of SO42− ion, NO3− ion and Na2S additives , 2007 .

[16]  Robert A. Cottis,et al.  Shot noise and statistical parameters for the estimation of corrosion mechanisms , 2005 .

[17]  Tshidiso Seleka,et al.  Laser surface melting of 304 stainless steel for pitting corrosion resistance improvement , 2006 .

[18]  T. Shibata,et al.  1996 W.R. Whitney Award Lecture: Statistical and Stochastic Approaches to Localized Corrosion , 1996 .

[19]  Tedd E. Lister,et al.  General and Localized Corrosion of Borated Stainless Steels , 2008 .

[20]  A S Mikhailov,et al.  Sudden Onset of Pitting Corrosion on Stainless Steel as a Critical Phenomenon , 2004, Science.

[21]  F. Huet,et al.  Analysis of Electrochemical Noise by Power Spectral Density Applied to Corrosion Studies Maximum Entropy Method or Fast Fourier Transform , 1998 .

[22]  R. Alkire,et al.  Initiation of Corrosion Pits at Inclusions on 304 Stainless Steel , 1995 .

[23]  Patrik Schmuki,et al.  The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion , 2005 .

[24]  A. K. Bhaduri,et al.  Effect of boron addition on pitting corrosion resistance of modified 9Cr–1Mo steel: Application of electrochemical noise , 2011 .

[25]  S. Pyun,et al.  Comparison of susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys in neutral chloride solutions using electrochemical noise analysis , 2008 .

[26]  S. Singh,et al.  Electrochemical noise studies of the effect of nitrogen on pitting corrosion resistance of high nitrogen austenitic stainless steels , 2011 .

[27]  N. Parvathavarthini,et al.  Assessment of intergranular corrosion (IGC) in 316(N) stainless steel using electrochemical noise (EN) technique , 2009 .

[28]  Walter Bogaerts,et al.  Electrochemical Emission Spectroscopy for Monitoring Uniform and Localized Corrosion , 1995 .

[29]  A. Legat,et al.  Corrosion monitoring system based on measurement and analysis of electrochemical noise , 1995 .

[30]  Jl Dawson,et al.  Electrochemical Noise Measurement: The Definitive In-Situ Technique for Corrosion Applications? , 1996 .

[31]  U. Bertocci Separation Between Deterministic Response and Random Fluctuations by Means of the Cross‐Power Spectrum in the Study of Electrochemical Noise , 1981 .

[32]  R. Cottis,et al.  A practical evaluation of electrochemical noise parameters as indicators of corrosion type , 2004 .

[33]  Crevice Corrosion Study on Alloy 22 by Electrochemical Noise Technique , 2012 .

[34]  S. Pyun,et al.  Effect of sulphate and molybdate ions on pitting corrosion of aluminium by using electrochemical noise analysis , 2006 .

[35]  H. Klapper,et al.  Influence of Surface Treatments on the Pitting Corrosion of Type 304 Stainless Steel by Electrochemical Noise Measurements , 2011 .

[36]  J. B. Gnanamoorthy,et al.  Influence of thermal aging on the intergranular corrosion resistance of types 304LN and 316LN stainless steels , 1996 .

[37]  N. Parvathavarthini,et al.  Influence of solution-annealing and stress-relieving on the pitting corrosion resistance of modified 316N SS weld metals: A study using EN technique , 2010 .

[38]  G. Berthomé,et al.  Pitting transients analysis of stainless steels at the open circuit potential , 2006 .

[39]  P. M. Aziz Application of the Statistical Theory of Extreme Values To the Analysis of Maximum Pit Depth Data for Aluminum , 1956 .

[40]  P. Pistorius The Effect of Some Fundamental Aspects of the Pitting Corrosion of Stainless Steel on Electrochemical Noise Measurements , 1996 .

[41]  Robert A. Cottis,et al.  Measures for the detection of localized corrosion with electrochemical noise , 2001 .

[42]  A. D'Amico,et al.  Electrochemical Noise Resistance as a Tool for Corrosion Rate Prediction , 1997 .

[43]  J. Castle,et al.  Studies by auger spectroscopy of pit initiation at the site of inclusions in stainless steel , 1990 .

[44]  Claudia Marcela Méndez,et al.  Microstructure, heat treatment and pitting corrosion of 13CrNiMo plate and weld metals , 2009 .

[45]  G. Frankel Pitting Corrosion of Metals A Review of the Critical Factors , 1998 .

[46]  Tao Zhang,et al.  Electrochemical noise analysis on the pit corrosion susceptibility of Mg-10Gd-2Y-0.5Zr, AZ91D alloy and pure magnesium using stochastic model , 2008 .

[47]  J. E. Strutt,et al.  THE PREDICTION OF CORROSION BY STATISTICAL ANALYSIS OF CORROSION PROFILES , 1985 .

[48]  H. Böhni,et al.  Microelectrodes for studies of localized corrosion processes , 1998 .

[49]  Diego A. Moreno,et al.  Microstructural Characterization and Pitting Corrosion Behavior of UNS S30466 Borated Stainless Steel , 2004 .

[50]  S. Steels Standard Practices for Detecting Susceptibility to Intergranular Attack in Ferritic , 2004 .

[51]  R. Cottis Interpretation of Electrochemical Noise Data , 2001 .