70 years of Krylov subspace methods: The journey continues
暂无分享,去创建一个
[1] B. F. Nielsen,et al. Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning , 2022, Numerical Algorithms.
[2] Gérard Meurant,et al. Accurate error estimation in CG , 2021, Numerical Algorithms.
[3] Pseudospectra of matrices , 2020, Spectra and Pseudospectra.
[4] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[5] J. Tropp,et al. Randomized numerical linear algebra: Foundations and algorithms , 2020, Acta Numerica.
[6] Erin Carson,et al. On the cost of iterative computations , 2020, Philosophical Transactions of the Royal Society A.
[7] G. Meurant. On prescribing the convergence behavior of the conjugate gradient algorithm , 2019, Numerical Algorithms.
[8] Thomas Trogdon,et al. Universality in numerical computation with random data: Case studies and analytical results , 2019, Journal of Mathematical Physics.
[9] Z. Strakos,et al. Algebraic description of the finite Stieltjes moment problem , 2019, Linear Algebra and its Applications.
[10] Are Magnus Bruaset,et al. Krylov Subspace Methods , 2018, Krylov Subspace Methods with Application in Incompressible Fluid Flow Solvers.
[11] L. Čížková,et al. Numerical Linear Algebra , 2018, Encyclopedia of Parallel Computing.
[12] Miroslav Tuma,et al. The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology , 2018, SIAM J. Sci. Comput..
[13] Zdenek Strakos,et al. Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator , 2018, SIAM J. Numer. Anal..
[14] P. Joyce. Matrices , 2018, Numerical Methods in Physics with Python.
[15] Lloyd N. Trefethen,et al. GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..
[16] Iveta Hnetynková,et al. Relating Computed and Exact Entities in Methods Based on Lanczos Tridiagonalization , 2017, HPCSE.
[17] Emmanuel Agullo,et al. Analyzing the Effect of Local Rounding Error Propagation on the Maximal Attainable Accuracy of the Pipelined Conjugate Gradient Method , 2016, SIAM J. Matrix Anal. Appl..
[18] A. Greenbaum,et al. Matrices That Generate the Same Krylov Residual Spaces , 2015 .
[19] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[20] Zdenek Strakos,et al. Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.
[21] P. Deift,et al. Universality in numerical computations with random data , 2014, Proceedings of the National Academy of Sciences.
[22] Howard C. Elman,et al. IFISS: A Computational Laboratory for Investigating Incompressible Flow Problems , 2014, SIAM Rev..
[23] Jörg Liesen,et al. Properties of Worst-Case GMRES , 2013, SIAM J. Matrix Anal. Appl..
[24] J. Liesen,et al. Max-min and min-max approximation problems for normal matrices revisited , 2013, 1310.5880.
[25] Tomáš Gergelits,et al. Analysis of Krylov subspace methods , 2013 .
[26] Y. Saad,et al. Approximating Spectral Densities of Large Matrices , 2013, SIAM Rev..
[27] Zdenek Strakos,et al. Model reduction using the Vorobyev moment problem , 2009, Numerical Algorithms.
[28] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[29] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[30] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[31] K. Mekchay. Convergence of Adaptive Finite Element Methods , 2005 .
[32] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[33] Julien Langou,et al. Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.
[34] Zdenek Strakos,et al. GMRES Convergence Analysis for a Convection-Diffusion Model Problem , 2005, SIAM J. Sci. Comput..
[35] Jörg Liesen,et al. Convergence analysis of Krylov subspace methods , 2004 .
[36] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[37] H. A. Vorst. Iterative Krylov Methods for Large Linear Systems , 2003 .
[38] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[39] Christopher C. Paige,et al. Scaled total least squares fundamentals , 2002, Numerische Mathematik.
[40] Zdenek Strakos,et al. Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods , 2001, SIAM J. Sci. Comput..
[41] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[42] Zdenek Strakos,et al. Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..
[43] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[44] M. Arioli,et al. Krylov sequences of maximal length and convergence of GMRES , 1997 .
[45] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[46] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[47] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[48] Vladimir Druskin,et al. Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..
[49] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[50] Wayne Joubert,et al. A Robust GMRES-Based Adaptive Polynomial Preconditioning Algorithm for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..
[51] Anne Greenbaum,et al. Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..
[52] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[53] L. Trefethen,et al. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .
[54] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[55] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.
[56] Z. Strakos,et al. On the real convergence rate of the conjugate gradient method , 1991 .
[57] Gene H. Golub,et al. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..
[58] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[59] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[60] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[61] J. W. Silverstein. The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .
[62] S. Geman. A Limit Theorem for the Norm of Random Matrices , 1980 .
[63] A. Greenbaum. Comparison of splittings used with the conjugate gradient algorithm , 1979 .
[64] A. Jennings. Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .
[65] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[66] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[67] C. Lanczos. Chebyshev polynomials in the solution of large-scale linear systems , 1952, ACM '52.
[68] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[69] W. Karush. Convergence of a method of solving linear problems , 1952 .
[70] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[71] Gérard Meurant,et al. Krylov Methods for Nonsymmetric Linear Systems , 2020 .
[72] Erin Carson,et al. Communication-Avoiding Krylov Subspace Methods in Theory and Practice , 2015 .
[73] W. Marsden. I and J , 2012 .
[74] G. Meurant. The Lanczos and conjugate gradient algorithms , 2008 .
[75] Numerische,et al. On the convergence rate of the conjugate gradients in presence of rounding errors * , 2005 .
[76] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[77] Arno B. J. Kuijlaars,et al. Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..
[78] Arno B. J. Kuijlaars,et al. On The Sharpness of an Asymptotic Error Estimate for Conjugate Gradients , 2001 .
[79] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[80] Gene H. Golub,et al. Closer to the solutions: iterative linear solvers , 1997 .
[81] J. Kuczy,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992 .
[82] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[83] P. Wesseling,et al. Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .
[84] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[85] I︠u︡. V. Vorobʹev. Method of moments in applied mathematics , 1965 .
[86] An iterative method for the solution of the eigenvalue problem of linear differential and integral , 1950 .