On Hamiltonian alternating cycles and paths

We undertake a study on computing Hamiltonian alternating cycles and paths on bicolored point sets. This has been an intensively studied problem, not always with a solution, when the paths and cycles are also required to be plane. In this paper, we relax the constraint on the cycles and paths from being plane to being 1-plane, and deal with the same type of questions as those for the plane case, obtaining a remarkable variety of results. Among them, we prove that a 1-plane Hamiltonian alternating cycle on a bicolored point set in general position can always be obtained, and that when the point set is in convex position, every Hamiltonian alternating cycle with minimum number of crossings is 1-plane. Further, for point sets in convex position, we provide $O(n)$ and $O(n^2)$ time algorithms for computing, respectively, Hamiltonian alternating cycles and paths with minimum number of crossings.

[1]  Shin-ichi Tokunaga On a straight-line embedding problem of graphs , 1996, Discret. Math..

[2]  Javier Tejel,et al.  Dividiendo una nube de puntos en regiones convexas , 1995 .

[3]  Jan Kyncl,et al.  Universal Sets for Straight-Line Embeddings of Bicolored Graphs , 2011, ArXiv.

[4]  Csaba D. Tóth,et al.  Plane Geometric Graph Augmentation: A Generic Perspective , 2013 .

[5]  Jorge Urrutia,et al.  Simple alternating path problem , 1990, Discret. Math..

[6]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[7]  Shin-ichi Tokunaga,et al.  Intersection Number of Two Connected Geometric Graphs , 1996, Inf. Process. Lett..

[8]  Mikio Kano,et al.  Discrete Geometry on Red and Blue Points in the Plane — A Survey — , 2020 .

[9]  János Pach,et al.  Long alternating paths in bicolored point sets , 2008, Discret. Math..

[10]  Mikio Kano,et al.  Alternating Hamilton Cycles with Minimum Number of Crossings in the Plane , 2000, Int. J. Comput. Geom. Appl..

[11]  Mikhail J. Atallah A Matching Problem in the Plane , 1985, J. Comput. Syst. Sci..

[12]  Viola Meszaros Extremal problems on planar point sets , 2011 .

[13]  J. Pach Thirty essays on geometric graph theory , 2013 .

[14]  Adrian Dumitrescu,et al.  On a matching problem in the plane , 2000, Discret. Math..

[15]  Marc Noy,et al.  Bipartite Embeddings of Trees in the Plane , 1999, Discret. Appl. Math..

[16]  János Pach,et al.  Long Alternating Paths in Bicolored Point Sets , 2004, Graph Drawing.

[17]  Adrian Dumitrescu,et al.  Matching colored points in the plane: Some new results , 2001, Comput. Geom..

[18]  R. Ansorge Abhandlungen aus dem mathematischen seminar der Universität Hamburg , 1977 .

[19]  Mark H. Overmars,et al.  New methods for computing visibility graphs , 1988, SCG '88.

[20]  Delia Garijo,et al.  The alternating path problem revisited , 2013 .

[21]  Subhash Suri,et al.  Applications of a semi-dynamic convex hull algorithm , 1990, BIT.

[22]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .