도메인 적응 기술을 이용한 한국어 의미역 인식

높은 성능의 의미역 인식 시스템의 개발을 위해서는 대상 도메인에 대한 대량의 수동 태깅 학습 데이터가 필요하다. 그러나 충분한 크기의 의미역 인식용 학습 데이터는 오직 소수의 도메인에서만 존재한다. 소스 도메인의 시스템을 상대적으로 매우 작은 학습 데이터를 가진 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 이러한 도메인 변경에서의 성능 하락 현상을 최소화하기 위해 본 논문에서는 2 가지 기법을 제시한다. 첫째, 도메인 적응 방법론의 하나인 Prior 모델에 기반하여 개발된 한국어 의미역 인식 시스템을 위한 도메인 적응 알고리즘을 제안한다. 둘째, 크기가 작은 타겟 도메인 데이터를 이용할 때 데이터 희귀 문제의 감소를 위해 소스 도메인 데이터 이용시 보다 단순화된 형태소 태그와 구문 태그 자질을 사용할 것을 제안한다. 뉴스 도메인에서 개발된 시스템의 위키피디아 도메인에의 적용과 관련하여 다른 연구의 도메인 적응 기술과 우리가 제안한 방법을 비교 실험하였다. 우리의 두 가지 방법을 같이 사용할 때 더 높은 성능을 달성하는 것을 관찰하였다. 우리 시스템은 F1-score 64.3% 성능으로서 기존의 다른 도메인 적응 기술들과 비교하여 2.4~3.1% 더 높은 성능을 가지는 것으로 관찰되었다.