A Broadband High-Efficiency Doherty Power Amplifier With Integrated Compensating Reactance

This paper presents a high-efficiency gallium nitride Doherty power amplifier (DPA) using an integrated compensating reactance (CR) for broadband operation. With an additional quarter-wavelength transmission line integrated in the peaking amplifier output, a CR is generated to compensate the load impedance of the carrier amplifier in the low-power region and thus enhance the back-off efficiency over a wide frequency range without affecting the Doherty load modulation at saturation. For this purpose, a peaking output matching network (OMN) is employed to convert the output impedance of the peaking device into quasi-short circuit when it is off and achieve proper impedance matching when it is on. A two-point matching technique using the transmission (ABCD) matrix is employed to design such desired OMN. Measurement results show that the DPA has a 6-dB back-off efficiency of 50%-55% and a saturated efficiency of 57%-71% over the frequency band of 1.7-2.8 GHz (49% fractional bandwidth). When driven by a 20-MHz long term evolution modulated signal at 6.5-dB back-off power, the DPA can achieve an average efficiency of more than 50% with high linearity after linearization over the design frequency band.

[1]  Kwok-Keung M. Cheng,et al.  Broadband, wide efficiency range, Doherty Amplifier design using frequency-varying Complex Combining Load , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[2]  Rolf H. Jansen,et al.  Broadband Doherty Power Amplifier via Real Frequency Technique , 2012, IEEE Transactions on Microwave Theory and Techniques.

[3]  Jangheon Kim,et al.  Efficiency Enhancement of Doherty Amplifier Through Mitigation of the Knee Voltage Effect , 2011, IEEE Transactions on Microwave Theory and Techniques.

[4]  Slim Boumaiza,et al.  An extended bandwidth Doherty power amplifier using a novel output combiner , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[5]  Christian Fager,et al.  A 1–3-GHz Digitally Controlled Dual-RF Input Power-Amplifier Design Based on a Doherty-Outphasing Continuum Analysis , 2013, IEEE Transactions on Microwave Theory and Techniques.

[6]  Kwok-Keung M. Cheng,et al.  Improving Power Utilization Factor of Broadband Doherty Amplifier by Using Bandpass Auxiliary Transformer , 2015, IEEE Transactions on Microwave Theory and Techniques.

[7]  Kwok-Keung M. Cheng,et al.  Extension of High-Efficiency Range of Doherty Amplifier by Using Complex Combining Load , 2014, IEEE Transactions on Microwave Theory and Techniques.

[8]  Xiaowei Zhu,et al.  High-Efficiency GaN Doherty Power Amplifier for 100-MHz LTE-Advanced Application Based on Modified Load Modulation Network , 2013, IEEE Transactions on Microwave Theory and Techniques.

[9]  A. Z. Markos,et al.  Frequency Response Analysis and Bandwidth Extension of the Doherty Amplifier , 2011, IEEE Transactions on Microwave Theory and Techniques.

[10]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[11]  G. Ghione,et al.  3–3.6-GHz Wideband GaN Doherty Power Amplifier Exploiting Output Compensation Stages , 2012, IEEE Transactions on Microwave Theory and Techniques.

[12]  Lei Guan,et al.  Simplified dynamic deviation reduction-based Volterra model for Doherty power amplifiers , 2011, 2011 Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits.

[13]  Jangheon Kim,et al.  Power Efficiency and Linearity Enhancement Using Optimized Asymmetrical Doherty Power Amplifiers , 2011, IEEE Transactions on Microwave Theory and Techniques.

[14]  Franco Giannini,et al.  A Closed-Form Design Technique for Ultra-Wideband Doherty Power Amplifiers , 2014, IEEE Transactions on Microwave Theory and Techniques.

[15]  Anding Zhu,et al.  Digital Predistortion for Envelope-Tracking Power Amplifiers Using Decomposed Piecewise Volterra Series , 2008, IEEE Transactions on Microwave Theory and Techniques.

[16]  Franco Giannini,et al.  A Wideband Doherty Architecture With 36% of Fractional Bandwidth , 2013, IEEE Microwave and Wireless Components Letters.

[17]  S. Boumaiza,et al.  A Modified Doherty Configuration for Broadband Amplification Using Symmetrical Devices , 2012, IEEE Transactions on Microwave Theory and Techniques.

[18]  C. Fager,et al.  A Modified Doherty Power Amplifier With Extended Bandwidth and Reconfigurable Efficiency , 2013, IEEE Transactions on Microwave Theory and Techniques.

[19]  Quan Xue,et al.  Optimized Load Modulation Network for Doherty Power Amplifier Performance Enhancement , 2012, IEEE Transactions on Microwave Theory and Techniques.

[20]  C. Weitzel,et al.  RF power amplifiers for wireless communications , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[21]  Dongsu Kim,et al.  Design of Bandwidth-Enhanced Doherty Power Amplifiers for Handset Applications , 2011, IEEE Transactions on Microwave Theory and Techniques.

[22]  F. Giannini,et al.  Increasing Doherty Amplifier Average Efficiency Exploiting Device Knee Voltage Behavior , 2011, IEEE Transactions on Microwave Theory and Techniques.

[23]  F. M. Ghannouchi,et al.  A Transformer-Less Load-Modulated (TLLM) Architecture for Efficient Wideband Power Amplifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[24]  Shintaro Watanabe,et al.  A Miniature Broadband Doherty Power Amplifier With a Series-Connected Load , 2015, IEEE Transactions on Microwave Theory and Techniques.

[25]  F. M. Ghannouchi,et al.  Digital Doherty Amplifier With Enhanced Efficiency and Extended Range , 2011, IEEE Transactions on Microwave Theory and Techniques.

[26]  F. Giannini,et al.  A Doherty Architecture With High Feasibility and Defined Bandwidth Behavior , 2013, IEEE Transactions on Microwave Theory and Techniques.