SMORE: Synteny Modulator of Repetitive Elements

Several families of multicopy genes, such as transfer ribonucleic acids (tRNAs) and ribosomal RNAs (rRNAs), are subject to concerted evolution, an effect that keeps sequences of paralogous genes effectively identical. Under these circumstances, it is impossible to distinguish orthologs from paralogs on the basis of sequence similarity alone. Synteny, the preservation of relative genomic locations, however, also remains informative for the disambiguation of evolutionary relationships in this situation. In this contribution, we describe an automatic pipeline for the evolutionary analysis of such cases that use genome-wide alignments as a starting point to assign orthology relationships determined by synteny. The evolution of tRNAs in primates as well as the history of the Y RNA family in vertebrates and nematodes are used to showcase the method. The pipeline is freely available.

[1]  Manuel A. S. Santos,et al.  Discovery and function of transfer RNA‐derived fragments and their role in disease , 2017, Wiley interdisciplinary reviews. RNA.

[2]  T. Krude,et al.  Non-coding Y RNAs associate with early replicating euchromatin in concordance with the origin recognition complex , 2017, Journal of Cell Science.

[3]  Nancy Retzlaff,et al.  Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies , 2016, BMC Genomics.

[4]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[5]  Justin C. Fay,et al.  Patterns of Gene Conversion in Duplicated Yeast Histones Suggest Strong Selection on a Coadapted Macromolecular Complex , 2015, Genome biology and evolution.

[6]  Pedro Feijão,et al.  Reconstruction of ancestral gene orders using intermediate genomes , 2015, BMC Bioinformatics.

[7]  P. Stadler,et al.  Towards a comprehensive picture of alloacceptor tRNA remolding in metazoan mitochondrial genomes , 2015, Nucleic acids research.

[8]  M. P. Kowalski,et al.  Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in C. elegans , 2015, Journal of Cell Science.

[9]  Jens Stoye,et al.  Sorting Linear Genomes with Rearrangements and Indels , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[10]  Peter F. Stadler,et al.  The Expansion of Animal MicroRNA Families Revisited , 2015, Life.

[11]  B. Lang,et al.  Evolution of tRNA Repertoires in Bacillus Inferred with OrthoAlign. , 2015, Molecular biology and evolution.

[12]  Martin Middendorf,et al.  Phylogenomics with paralogs , 2015, Proceedings of the National Academy of Sciences.

[13]  Jijun Tang,et al.  MLGO: phylogeny reconstruction and ancestral inference from gene-order data , 2014, BMC Bioinformatics.

[14]  G. Moreno-Hagelsieb,et al.  Quickly Finding Orthologs as Reciprocal Best Hits with BLAT, LAST, and UBLAST: How Much Do We Miss? , 2014, PloS one.

[15]  Sam Griffiths-Jones,et al.  tRNA anticodon shifts in eukaryotic genomes , 2014, RNA.

[16]  Hans-Peter Lenhof,et al.  Phylogenetics from paralogs , 2014 .

[17]  Dannie Durand,et al.  How old is my gene? , 2013, Trends in genetics : TIG.

[18]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[19]  T. Dalmay,et al.  Y RNAs: recent developments , 2013, Biomolecular concepts.

[20]  M. Wingfield,et al.  Concerted Evolution in the Ribosomal RNA Cistron , 2013, PloS one.

[21]  Gaston H. Gonnet,et al.  The Impact of Gene Duplication, Insertion, Deletion, Lateral Gene Transfer and Sequencing Error on Orthology Inference: A Simulation Study , 2013, PloS one.

[22]  P. Holland,et al.  Evolution of homeobox genes , 2013, Wiley interdisciplinary reviews. Developmental biology.

[23]  Katharina T. Huber,et al.  Orthology relations, symbolic ultrametrics, and cographs , 2013, Journal of mathematical biology.

[24]  Katharina T. Huber,et al.  From event-labeled gene trees to species trees , 2012, BMC Bioinformatics.

[25]  Yunlong Liu,et al.  Complexity and parameterized algorithms for Cograph Editing , 2012, Theor. Comput. Sci..

[26]  G. Bejerano,et al.  A "forward genomics" approach links genotype to phenotype using independent phenotypic losses among related species. , 2012, Cell reports.

[27]  P. Stadler,et al.  LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. , 2012, RNA.

[28]  I. Ruvinsky,et al.  Family Size and Turnover Rates among Several Classes of Small Non–Protein-Coding RNA Genes in Caenorhabditis Nematodes , 2012, Genome biology and evolution.

[29]  P. Stadler,et al.  Structure of transfer RNAs: similarity and variability , 2012, Wiley interdisciplinary reviews. RNA.

[30]  Arcady R. Mushegian,et al.  Computational methods for Gene Orthology inference , 2011, Briefings Bioinform..

[31]  A. Rokas,et al.  Evaluating Ortholog Prediction Algorithms in a Yeast Model Clade , 2011, PloS one.

[32]  Sonja J. Prohaska,et al.  Proteinortho: Detection of (Co-)orthologs in large-scale analysis , 2011, BMC Bioinformatics.

[33]  Casey M. Bergman,et al.  The Evolution of tRNA Genes in Drosophila , 2010, Genome biology and evolution.

[34]  Rolf Backofen,et al.  Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA , 2010, Nucleic Acids Res..

[35]  Toralf Kirsten,et al.  Genomic organization of eukaryotic tRNAs , 2010, BMC Genomics.

[36]  Andrea Tanzer,et al.  Nematode sbRNAs: Homologs of Vertebrate Y RNAs , 2010, Journal of Molecular Evolution.

[37]  S. Whitehall,et al.  tRNA genes in eukaryotic genome organization and reorganization , 2009, Cell cycle.

[38]  Christophe Dessimoz,et al.  Phylogenetic and Functional Assessment of Orthologs Inference Projects and Methods , 2009, PLoS Comput. Biol..

[39]  C. Bagni On BC1 RNA and the fragile X mental retardation protein , 2008, Proceedings of the National Academy of Sciences.

[40]  Runsheng Chen,et al.  Microarray analysis of ncRNA expression patterns in Caenorhabditis elegans after RNAi against snoRNA associated proteins , 2008, BMC Genomics.

[41]  Matthias Bernt,et al.  CREx: inferring genomic rearrangements based on common intervals , 2007, Bioinform..

[42]  Jonathan Perreault,et al.  Ro-associated Y RNAs in metazoans: evolution and diversification. , 2007, Molecular biology and evolution.

[43]  Peter F. Stadler,et al.  Evolution of the vertebrate Y RNA cluster , 2007, Theory in Biosciences.

[44]  Rolf Backofen,et al.  Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering , 2007, PLoS Comput. Biol..

[45]  Gustavo Caetano-Anollés,et al.  Common evolutionary trends for SINE RNA structures. , 2007, Trends in genetics : TIG.

[46]  T. Krude,et al.  Functional Requirement of Noncoding Y RNAs for Human Chromosomal DNA Replication , 2006, Molecular and Cellular Biology.

[47]  A. Smit,et al.  Functional noncoding sequences derived from SINEs in the mammalian genome. , 2006, Genome research.

[48]  Baoyan Bai,et al.  Organization of the Caenorhabditis elegans small non-coding transcriptome: genomic features, biogenesis, and expression. , 2005, Genome research.

[49]  M. Nei,et al.  Concerted and birth-and-death evolution of multigene families. , 2005, Annual review of genetics.

[50]  Jonathan Perreault,et al.  Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs , 2005, Nucleic acids research.

[51]  Manfred Eigen,et al.  Transfer-RNA, an early gene? , 1981, Naturwissenschaften.

[52]  F. Frenkel,et al.  Evolution of tRNA-like sequences and genome variability. , 2004, Gene.

[53]  Hideki Innan,et al.  The Effect of Gene Conversion on the Divergence Between Duplicated Genes , 2004, Genetics.

[54]  R. Bieler,et al.  Changing identities: tRNA duplication and remolding within animal mitochondrial genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  K. H. Wolfe,et al.  Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. , 2002, Genome research.

[56]  A. Hüttenhofer,et al.  Neuronal BC1 RNA structure: evolutionary conversion of a tRNA(Ala) domain into an extended stem-loop structure. , 2001, RNA.

[57]  G. Pruijn,et al.  Conserved features of Y RNAs: a comparison of experimentally derived secondary structures. , 2000, Nucleic acids research.

[58]  G. Pruijn,et al.  Rapid Nucleolytic Degradation of the Small Cytoplasmic Y RNAs during Apoptosis* , 1999, The Journal of Biological Chemistry.

[59]  G. Pruijn,et al.  Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis. , 1999, Nucleic acids research.

[60]  D. Liao,et al.  Concerted evolution: molecular mechanism and biological implications. , 1999, American journal of human genetics.

[61]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[62]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[63]  A. Weiner,et al.  Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion , 1997, The EMBO journal.

[64]  S. Wolin,et al.  Xenopus Ro ribonucleoproteins: members of an evolutionarily conserved class of cytoplasmic ribonucleoproteins. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A Dress,et al.  How old is the genetic code? Statistical geometry of tRNA provides an answer. , 1989, Science.

[66]  W. Heyer,et al.  Concerted evolution of tRNA genes: Intergenic conversion among three unlinked serine tRNA genes in S. pombe , 1985, Cell.

[67]  J. Steitz,et al.  Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells , 1981, Molecular and cellular biology.

[68]  J A Hardin,et al.  Two novel classes of small ribonucleoproteins detected by antibodies associated with lupus erythematosus. , 1981, Science.

[69]  W. Fitch Distinguishing homologous from analogous proteins. , 1970, Systematic zoology.

[70]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .