Coherence preservation of Markovian open quantum systems in N-level Ξ configuration

Coherence preservation of Ξ-type N-level atoms is investigated. The coherence is embodied by the coherence functions that are defined in an N-dimension Hilbert space. The objective is to design external control field that maintains the coherence functions at a constant value. For this purpose, the number of components of the field should be the same as the number of coherence functions. We demonstrate that it is possible to keep multi-coherence functions constant for an finite time by applying designed field that each component addresses a particular coherence function. In addition, the applied field has singular character that makes the field effective within an interval time, and its practical significance is discussed in this circumstance.

[1]  Jing Zhang,et al.  Protecting Coherence and Entanglement by Quantum Feedback Controls , 2010, IEEE Transactions on Automatic Control.

[2]  D. Sugny,et al.  Time-optimal control of a two-level dissipative quantum system , 2007, 0708.3794.

[3]  S. N. Sandhya Four-level atom dynamics and emission statistics using a quantum jump approach , 2007 .

[4]  Q. Thommen,et al.  Electromagnetically induced left handedness in optically excited four-level atomic media. , 2006, Physical review letters.

[5]  Jing Zhang,et al.  Maximal suppression of decoherence in Markovian quantum systems , 2005 .

[6]  Daniel A. Lidar,et al.  Stabilizing qubit coherence via tracking-control , 2004, Quantum Inf. Comput..

[7]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[8]  S. M. Tan,et al.  Polariton analysis of a four-level atom strongly coupled to a cavity mode , 2001, quant-ph/0111161.

[9]  V. Akila,et al.  Information , 2001, The Lancet.

[10]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[11]  A. Doherty,et al.  Information, disturbance and Hamiltonian quantum feedback control , 2000, quant-ph/0006013.

[12]  Herschel Rabitz,et al.  Managing singular behavior in the tracking control of quantum dynamical observables , 1999 .

[13]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[14]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[15]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[16]  J. I. Cirac,et al.  Enforcing Coherent Evolution in Dissipative Quantum Dynamics , 1996, Science.

[17]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[18]  Fei Yang,et al.  Coherence preservation in 3-level atom , 2011, Quantum Inf. Comput..

[19]  I. Stamatescu,et al.  BOOK REVIEW: Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[20]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .