Supramolekulare Synthone für das Kristall‐Engineering ‐ eine neue organische Synthese

Der Kristall einer organischen Verbindung ist die hochste Form eines Supramolekuls, und sein von chemischen und geometrischen Faktoren bestimmter Zusammenbau aus Molekulen ist das perfekte Beispiel fur molekulare Erkennung im festen Zustand. Die supramolekulare Beschreibung einer Kristallstruktur beinhaltet, das die Molekule im Kristall durch nichtkovalente Wechselwirkungen zusammengehalten werden. Die Notwendigkeit fur einen rationalen Zugang zu Festkorpern von grundlegender und praktischer Bedeutung hat zum Entstehen des Kristall-Engineering gefuhrt, bei dem man versucht, die intermolekularen Wechselwirkungen und Erkennungsphanomene im Zusammenhang mit der Kristallpackung zu verstehen. Das Ziel des Kristall-Engineering ist es, auf der Grundlage der intermolekularen Wechselwirkungen zuverlassige Zusammenhange zwischen der molekularen und der supramolekularen Struktur herzustellen, und idealerweise mochte man Substrukturen in einem Zielsupramolekul identifizieren, das aus logisch gewahlten Vorlaufermolekulen zusammengesetzt werden kann. In der Tat ist Kristall-Engineering eine neue Form der organischen Synthese, und es soll in diesem Beitrag gezeigt werden, das Kristall-Engineering nicht nur von nomineller Bedeutung fur die Organische Chemie ist, sondern im Kerngebiet der Organischen Chemie liegt und konzeptionell der traditionellen organischen Synthese uberraschend ahnlich ist. Im Detail unterscheiden sich Kristall-Engineering und organischen Synthese allerdings: Beim Kristall-Engineering spielen intermolekulare Wechselwirkungen und weniger kovalente Bindungen eine Rolle. Im ersten Teil dieses Beitrags wird die Strategie behandelt: Die verwandten Konzepte des Kristall-Engineering und der organischen Synthese werden hervorgehoben und der Begriff supramolekulares Synthon eingefuhrt. Im zweiten Teil steht die Methode im Vordergrund, d. h. die chemischen und geometrischen Eigenschaften der spezifischen intermolekularen Wechselwirkungen.

[1]  G. Whitesides,et al.  Solid-state structures of rosette and crinkled tape motifs derived from the cyanuric acid melamine lattice , 1992 .

[2]  G. Desiraju,et al.  Crystal chemistry of some (alkoxyphenyl)propiolic acids. The role of oxygen and hydrogen atoms in determining stack structures of planar aromatic compounds , 1989 .

[3]  James D. Wuest,et al.  Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers , 1991 .

[4]  D. Seebach Organische Synthese — wohin? , 1990 .

[5]  Giuseppe Filippini,et al.  The crystal structure of 1,3,5-triammo-2,4,6-trimtrobenzene: Centrosymmetric or non-centrosymmetric? , 1994 .

[6]  P. Eaton,et al.  Alkynylcubanes as Precursors of Rigid-Rod Molecules and Alkynylcyclooctatetraenes , 1994 .

[7]  E. Constable,et al.  The First Structurally Characterized Heterodinuclear Double‐Helicate Complex , 1993 .

[8]  Aleksandr Isaakovich Kitaĭgorodskiĭ,et al.  Molecular Crystals and Molecules , 1973 .

[9]  A. Gavezzotti,et al.  Are Crystal Structures Predictable , 1994 .

[10]  L. Leiserowitz,et al.  Molecular packing modes. Carboxylic acids , 1976 .

[11]  K. Henrick,et al.  Crystal Structure of a Supramolecular Dimer Formed by ππ Interactions between Two Interlocked Cyclic Zinc Porphyrin Trimers , 1994 .

[12]  J. Lehn,et al.  Janus molecules: Synthesis of double-headed heterocycles containing two identical hydrogen bonding arrays , 1994 .

[13]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[14]  W. Herrmann,et al.  aci-Nitrodiphenylmethan: Ein über Wasserstoffbrücken verknüpftes Dimer†‡ , 1993 .

[15]  David J. Williams,et al.  A New Class of Novel Macrocyclic Mesogens , 1994 .

[16]  W. Saenger,et al.  Geometry of carbon-hydrogen.cntdot..cntdot..cntdot.oxygen hydrogen bonds in carbohydrate crystal structures. Analysis of neutron diffraction data , 1992 .

[17]  T. J. Murray,et al.  Convenient Synthesis of 2-Amino-1,8-naphthyridines, Building Blocks for Host-Guest and Self-Assembling Systems , 1993 .

[18]  E. Corey,et al.  Robert Robinson Lecture. Retrosynthetic thinking—essentials and examples , 1988 .

[19]  Christopher A. Hunter,et al.  Meldola Lecture. The role of aromatic interactions in molecular recognition , 1994 .

[20]  K. Seddon,et al.  The hydrogen bond and crystal engineering , 1994 .

[21]  D. Seebach,et al.  Organic Synthesis—Where now? , 1990 .

[22]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[23]  M. Iwaoka,et al.  FIRST OBSERVATION OF A C-H...SE HYDROGEN BOND , 1994 .

[24]  H. L. Carrell,et al.  Intermolecular Effects in Crystals of 11-(Trifluoromethyl)-15,16-dihydrocyclopenta[a]phenanthren-17-one , 1994 .

[25]  E. Corey,et al.  The Logic of Chemical Synthesis , 1989 .

[26]  D. Braga,et al.  Hydrogen bonding in organometallic crystals. 1. From carboxylic acids and alcohols to carbonyl complexes , 1994 .

[27]  S. J. Loeb,et al.  Molecular recognition of nucleobases via simultaneous first- and second-sphere coordination , 1993 .

[28]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[29]  H. L. Anderson,et al.  Kristallstruktur eines durch π-π-Wechselwirkungen zwischen zwei ineinandergehakten cyclischen Zinkporphyrin-Trimeren gebildeten supramolekularen Dimers† , 1994 .

[30]  Alan H. Lipkus,et al.  Chemical Abstracts Service Chemical Registry System. 13. Enhanced handling of stereochemistry , 1991, J. Chem. Inf. Comput. Sci..

[31]  J. Lex,et al.  Shortened CC Bonds and Antiplanar OCOH Torsion Angles in 1,4-Cubanedicarboxylic Acid† , 1987 .

[32]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[33]  G. Heger,et al.  Neutron diffraction study of the structure of p-benzenedicarbonitrile , 1982 .

[34]  D. Britton,et al.  The Crystal Structure of AgC(CN)3 , 1966 .

[35]  C. Vicent,et al.  A Self‐Assembling, Hydrogen‐Bonded Helix , 1993 .

[36]  G. Whitesides,et al.  Molecular self-assembly through hydrogen bonding : supramolecular aggregates based on the cyanuric acid.melamine lattice , 1993 .

[37]  V. Bertolasi,et al.  Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the .beta.-diketone fragment , 1989 .

[38]  O. Ermer,et al.  Kristallstruktur von 2,5‐Di‐tert‐butylhydro‐chinon: polare Stapelung nichtpolarer, H‐verbrückter Schichten mit trigonaler Symmetrie , 1994 .

[39]  D. Braga,et al.  Hydrogen Bonding in Organometallic Crystals. 2. C-H.cntdot. .cntdot. .cntdot.O Hydrogen Bonds in Bridged and Terminal First-Row Metal Carbonyls , 1995 .

[40]  M. Nieuwenhuyzen,et al.  Hydrogen-Bonded Layers of Hydrogen Malate Anions: A Framework for Crystal Engineering , 1994 .

[41]  N. Thomas,et al.  An investigation into the role of chloro-substituents in hydrogen-bonded crystals: The crystal structures of the dichlorophenols , 1984 .

[42]  D. Mootz,et al.  2-Butyne and hydrogen chloride cocrystallized: solid-state geometry of Cl-H.cntdot..cntdot..cntdot..pi. hydrogen bonding to the carbon-carbon triple bond , 1992 .

[43]  M. Nielsen,et al.  Tetrathiafulvalenes as building blocks in supramolecular chemistry II , 2010 .

[44]  W. Saenger,et al.  The ordered water cluster in vitamin B12 coenzyme at 15 K is stabilized by C-H...O hydrogen bonds. , 1993, Acta crystallographica. Section D, Biological crystallography.

[45]  G. Desiraju,et al.  Cyano--halogen interactions and their role in the crystal structures of the 4-halobenzonitriles , 1989 .

[46]  V. Bertolasi,et al.  Evidence for resonance-assisted hydrogen bonding. 4. Covalent nature of the strong homonuclear hydrogen bond. Study of the O-H--O system by crystal structure correlation methods , 1994 .

[47]  Gautam R. Desiraju,et al.  The role of Cl.cntdot..cntdot..cntdot.Cl and C-H.cntdot..cntdot..cntdot.O interactions in the crystal engineering of 4-.ANG. short-axis structures , 1986 .

[48]  F. W. Fowler,et al.  An approach to the design of molecular solids. Strategies for controlling the assembly of molecules into two-dimensional layered structures , 1993 .

[49]  P. Hitchcock,et al.  Hydrogen-bonded layers of hydrogentartrate anions: two-dimensional building blocks for crystal engineering , 1993 .

[50]  E. Anslyn,et al.  Complexation of Carbonyl Compounds with an Organic Salt Dominated by Acid-Base Interactions in Dichloromethane , 1994 .

[51]  R. Hunter,et al.  The First Water‐Dependent Liquid Clathrate: X‐Ray Evidence in the Solid for a C ? H ⃛π(Heteroarene) ⃛ H ? C Interaction , 1994 .

[52]  G. Desiraju,et al.  The nature of halogen.cntdot..cntdot..cntdot.halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? , 1989 .

[53]  D. Braga,et al.  From Molecule to Molecular Aggregation: Clusters and Crystals of Clusters , 1994 .

[54]  David J. Williams,et al.  Neuartige makrocyclische Flüssigkristalle , 1994 .

[55]  M. Zaworotko Crystal engineering of diamondoid networks , 1994 .

[56]  R. Boese,et al.  Cooperative Effekte bei der Phasenumwandlung von Triethylcyclotriboroxan , 1987 .

[57]  G. Whitesides,et al.  The design of organic structures in the solid state: hydrogen-bonded molecular "tapes" , 1990 .

[58]  J. Dannenberg,et al.  Molecular orbital study of crystalline 1,3-cyclohexanedione. 2. Aggregates in two and three dimensions , 1994 .

[59]  A. Guy Orpen Structural systematics in molecular inorganic chemistry , 1993 .

[60]  Julius Rebek,et al.  Bildung eines Hohlraums durch Dimerisierung selbstkomplementärer Moleküle über Wasserstoffbrückenbindungen , 1993 .

[61]  P. Schleyer,et al.  Halogenated adamantanes: intermolecular interactions in the solid state. X-ray structures of difluorodiiodo-, trifluoroiodo- and tetraiodoadamantane , 1989 .

[62]  Jack D. Dunitz,et al.  Phase transitions in molecular crystals from a chemical viewpoint , 1991 .

[63]  L. Brammer,et al.  A Hydrogen-Bonded Chain Involving both N-H.cntdot..cntdot..cntdot.N and N-H.cntdot..cntdot..cntdot.Co Hydrogen Bonds. Low-Temperature X-ray Crystal Structure of [(NMP)3H2][Co(CO)4]2 (NMP = N-Methylpiperazine) , 1994 .

[64]  C. Wilcox,et al.  MOLECULAR TORSION BALANCE FOR WEAK MOLECULAR RECOGNITION FORCES. EFFECTS OF TILTED-T EDGE-TO-FACE AROMATIC INTERACTIONS ON CONFORMATIONAL SELECTION AND SOLID-STATE STRUCTURE , 1994 .

[65]  F. Vögtle,et al.  Catenane mit makrobicyclischer Zentraleinheit , 1993 .

[66]  G. Desiraju,et al.  Determination of an organic crystal structure with the aid of topochemical and related considerations: correlation of the molecular and crystal structures of α-benzylidene-γ-butyrolactone and 2-benzylidenecyclopentanone with their solid state photoreactivity , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[67]  C. Vicent,et al.  Molecular Recognition in the Solid State: Hydrogen-Bonding Control of Molecular Aggregation , 1994 .

[68]  Edwin C. Constable,et al.  Der erste strukturell charakterisierte heterodinucleare Doppelhelicat‐Komplex , 1993 .

[69]  J. Lehn,et al.  Supramolekulare Chemie – Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag)† , 1988 .

[70]  F. Leusen,et al.  The ab initio prediction of yet unknown molecular crystal structures by solving the crystal packing problem , 1994 .

[71]  M. Johnston,et al.  Self-Assembling Porphyrin [2]-Catenanes , 1994 .

[72]  H. Bock,et al.  aci‐Nitrodiphenylmethane: A Hydrogen‐Bonded Dimer , 1993 .

[73]  Raymond E. Davis,et al.  Influence of molecular dipole interactions on solid-state organization , 1991 .

[74]  Andrew D. Hamilton,et al.  Selbstorganisation zu einer Helix durch Wasserstoffbrückenbindungen , 1993 .

[75]  J. B. Hendrickson Organic Synthesis in the Age of Computers , 1990 .

[76]  J. Dannenberg,et al.  Molecular orbital studies of C-H...O H-bonded complexes , 1993 .

[77]  F. Allen,et al.  Crystallographic Databases: Search and Retrieval of Information from the Cambridge Structural Database , 1994 .

[78]  W. Wong-Ng,et al.  Anisotropic atom–atom forces and the space group of solid chlorine , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[79]  Gerhard Klebe,et al.  A comparison of the crystal packing in benzene with the geometry seen in crystalline cyclophane-benzene complexes: guidelines for rational receptor design , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[80]  M. Ward,et al.  Layered Materials by Molecular Design: Structural Enforcement by Hydrogen Bonding in Guanidinium Alkane- and Arenesulfonates , 1994 .

[81]  Gautam R. Desiraju,et al.  The C-H.cntdot..cntdot..cntdot.O hydrogen bond in crystals: what is it? , 1991 .

[82]  Adonis Michaelides,et al.  Durch Succinatbrücken zu einem dreidimensionalen Netzwerk verknüpfte Ag4‐Cluster: Kristallstruktur von Succinatodisilber(1) , 1993 .

[83]  R. Alan Howie,et al.  CRYSTAL ENGINEERING OF HYDROGEN-BONDED CO-CRYSTALS BETWEEN CYANURIC ACID AND DIAMIDE MOLECULES - INVESTIGATIONS ON THE FORMATION AND STRUCTURE OF CO-CRYSTALS CONTAINING CYANURIC ACID AND OXALYL DIHYDRAZIDE , 1993 .

[84]  J. Lehn,et al.  Perspektiven der Supramolekularen Chemie – von der molekularen Erkennung zur molekularen Informationsverarbeitung und Selbstorganisation , 1990 .

[85]  H. Ringsdorf,et al.  Formation of Molecular Strands by Hydrogen Bonds at the Gas–Water Interface: Molecular Recognition and Quantitative Hydrolysis of Barbituric Acid Lipids , 1993 .

[86]  F. Vögtle,et al.  Multiring Catenanes with a Macrobicyclic Core , 1993 .

[87]  H. Whitlock,et al.  pi. Hydrogen bonds as a design principal in molecular recognition , 1992 .

[88]  A. Gomtsyan,et al.  MOLECULAR RECOGNITION AND SELF-ASSEMBLY BY WEAK HYDROGEN BONDING : UNPRECEDENTED SUPRAMOLECULAR HELICATE STRUCTURES FROM DIAMINE/DIOL MOTIFS , 1994 .

[89]  James B. Hendrickson,et al.  Organische Synthese im Computerzeitalter , 1990 .

[90]  J. Rademacher,et al.  .pi.-Complexation in the Solid State Induced by Intermolecular Hydrogen Bonding , 1994 .

[91]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[92]  Otto Ermer,et al.  Five-fold diamond structure of adamantane-1,3,5,7-tetracarboxylic acid , 1988 .

[93]  R. Pascal,et al.  Azaaromatic Chlorides: A Prescription for Crystal Structures with Extensive Nitrogen-Chlorine Donor-Acceptor Interactions , 1994 .

[94]  J. Rebek,et al.  A Synthetic Cavity Assembles Through Self-Complementary Hydrogen Bonds† , 1993 .

[95]  G. Desiraju,et al.  Database analysis of crystal-structure-determining interactions involving sulphur: implications for the design of organic metals , 1991 .

[96]  H. L. Carrell,et al.  3-(3',5'-Dinitrophenyl)-4-(2',5'-dimethoxyphenyl)cyclobutane-1,2-dicarboxylic Acid: Engineered Topochemical Synthesis and Molecular and Supramolecular Properties , 1994 .

[97]  F. Vögtle,et al.  Supramolecular chemistry : an introduction , 1993 .

[98]  J. Dunitz,et al.  An eclipsed C(sp3)−CH3 bond in a crystalline hydrated tricyclic orthoamide: evidence for C−H••••O hydrogen bonds , 1989 .

[99]  E J Corey,et al.  Computer-assisted design of complex organic syntheses. , 1969, Science.

[100]  Miriam Rossi,et al.  Crystal Structure Analysis for Chemists and Biologists , 1994 .

[101]  T. Kunitake,et al.  Self-organization of bilayer membranes from amphiphilic networks of complementary hydrogen bonds , 1993 .

[102]  J. Dunitz,et al.  Towards a Grammar of Crystal Packing , 1994 .

[103]  Carolyn Pratt Brock,et al.  On the validity of Wallach's rule: on the density and stability of racemic crystals compared with their chiral counterparts , 1991 .

[104]  Olga Kennard,et al.  Systematic analysis of structural data as a research technique in organic chemistry , 1983 .

[105]  Gerhard M. J. Schmidt,et al.  Photodimerization in the solid state , 1971 .

[106]  D. Williams,et al.  Transferability of nonbonded Cl⋯Cl potential energy function to crystalline chlorine , 1985 .

[107]  J. Perlstein Molecular self-assemblies. 2. A computational method for the prediction of the structure of one-dimensional screw, glide, and inversion molecular aggregates and implications for the packing of molecules in monolayers and crystals , 1994 .

[108]  Gautam R. Desiraju,et al.  Perspectives in Supramolecular Chemistry , 1996 .

[109]  Y. Yamashita,et al.  Clathrate formation and molecular recognition by novel chalcogen-cyano interactions in tetracyanoquinodimethanes fused with thiadiazole and selenadiazole rings , 1992 .

[110]  A. Hamilton,et al.  Hydrogen bonding control of self-assembly: Simple isophthalic acid derivatives form cyclic hexameric aggregates , 1994 .

[111]  Henry A. Bent,et al.  Structural chemistry of donor-acceptor interactions , 1968 .

[112]  G. Desiraju,et al.  Unexpected hydrogen bonding in the crystal structure of (4-chlorophenyl)propiolic acid. Role of C-H...O hydrogen bonds in determining O-H...O networks , 1990 .

[113]  G. Desiraju,et al.  Evidence for O-H.cntdot..cntdot..cntdot.C and N-H.cntdot..cntdot..cntdot.C hydrogen bonding in crystalline alkynes, alkenes, and aromatics , 1993 .

[114]  D. Braga Dynamical processes in crystalline organometallic complexes , 1992 .

[115]  G. Whitesides,et al.  Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides , 1994 .

[116]  E. Corey General methods for the construction of complex molecules , 1967 .

[117]  R. Boese,et al.  Cooperative Effects in the Phase Transformation of Triethylcyclotriboroxane , 1987 .

[118]  J. Lex,et al.  Verkürzte CC‐Bindungen und antiplanare OCOH‐Torsionswinkel in 1,4‐Cubandicarbonsäure , 1987 .

[119]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[120]  A. Stone,et al.  The Nature of -Cl.cntdot..cntdot..cntdot.Cl- Intermolecular Interactions , 1994 .

[121]  Olga Kennard,et al.  Crystallographic evidence for the existence of CH.cntdot..cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.Cl hydrogen bonds , 1982 .

[122]  E. Wintner,et al.  Studies in Molecular Replication , 1994 .

[123]  Gautam R. Desiraju,et al.  Crystal structures of polynuclear aromatic hydrocarbons. Classification, rationalization and prediction from molecular structure , 1989 .

[124]  W. Saenger,et al.  Role of C-H.cntdot..cntdot..cntdot.O hydrogen bonds in the coordination of water molecules. Analysis of neutron diffraction data , 1993 .

[125]  Jeffrey S. Moore,et al.  Aggregation of Hexa(phenylacetylene) Macrocycles in Solution: A Model System for Studying π-π Interactions , 1992 .

[126]  A. Gavezzotti,et al.  Generation of possible crystal structures from molecular structure for low-polarity organic compounds , 1991 .

[127]  R. Hunter,et al.  Das erste Wasser‐abhängige flüssige Clathrat: Nachweis einer C‐H …︁ π(Heteroaren) …︁ H‐C‐Wechselwirkung im Festkörper durch Röntgenstrukturanalyse , 1994 .

[128]  A. Michaelides,et al.  Tetranuclear Silver(I) Clusters Linked by Bridging Succinate Anions in a Three‐Dimensional Network: Crystal Structure of Succinatodisilver(I) , 1993 .

[129]  G. Whitesides,et al.  Structural Preferences of Hydrogen-Bonded Networks in Organic Solution - the Cyclic CA3.cntdot.M3 "Rosette" , 1994 .