Design sensitivity analysis and optimization for polymer sheet extrusion and mold filling processes

A polymer processing design methodology is presented which can be used to improve the production of plastic components manufactured via extrusion and injection molding processes. The design method combines polymer process modelling, design sensitivity analysis and numerical optimization. It is applicable to systems with creeping flow of purely viscous non-Newtonian fluids through thin cavities where the lubrication approximation may be applied. An analysis and an adjoint design sensitivity analysis are presented for the steady-state coupled system which describes the pressure and residence time distributions in sheeting dies. The resulting methodology is then used to define the optimal die cavity shape and relevant process parameters in a sheeting die design example. A second example considers tooling and process design for the polymer injection molding process. A coupled transient mold filling analysis and design sensitivity analysis based on the direct differentiation method are developed where attention is given to describing the location of the gates in the mold cavity. The latter is illustrated through the process design of a plastic automotive component. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[2]  Nicholas Zabaras,et al.  AN ADJOINT METHOD FOR THE INVERSE DESIGN OF SOLIDIFICATION PROCESSES WITH NATURAL CONVECTION , 1998 .

[3]  Andrzej Służalec,et al.  Shape optimization of weld surface , 1989 .

[4]  D. Tortorelli,et al.  Design sensitivity analysis: Overview and review , 1994 .

[5]  Gaav Gerard Haagh Numerical analysis of the flow of power law fluids in coat hanger dies , 1994 .

[6]  O. C. Zienkiewicz,et al.  Finite element methods for second order differential equations with significant first derivatives , 1976 .

[7]  Andreas Griewank,et al.  ADIFOR: A Fortran system for portable automatic differentiation , 1992 .

[8]  C. Tzoganakis,et al.  The Importance of Residence Time Analysis in Coextrusion Die Design , 1991 .

[9]  Ramana V. Grandhi,et al.  Design of optimal process parameters for non‐isothermal forging , 1994 .

[10]  Daniel A. Tortorelli,et al.  A systematic approach to shape sensitivity analysis , 1993 .

[11]  Daniel A. Tortorelli,et al.  Optimal design for polymer extrusion. Part I : Sensitivity analysis for nonlinear steady-state systems , 1998 .

[12]  Jean-Loup Chenot,et al.  OPTIMAL DESIGN FOR NON‐STEADY‐STATE METAL FORMING PROCESSES—I. SHAPE OPTIMIZATION METHOD , 1996 .

[13]  R. B. Haber,et al.  A new variational approach to structural shape design sensitivity analysis , 1987 .

[14]  Vaughan R Voller,et al.  STREAMLINE UPWIND SCHEME FOR CONTROL-VOLUME FINITE ELEMENTS, PART I. FORMULATIONS , 1992 .

[15]  Kyung K. Choi,et al.  A geometry-based parameterization method for shape design of elastic solids , 1992 .

[16]  Edward J. Haug,et al.  Design Sensitivity Analysis of Structural Systems , 1986 .

[17]  Donald E. Carlson,et al.  On the derivatives of the principal invariants of a second-order tensor , 1986 .

[18]  H. Henning Winter,et al.  Design of dies for the extrusion of sheets and annular parisons: The distribution problem , 1986 .

[19]  Tayfun E. Tezduyar,et al.  Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems , 1986 .

[20]  Daniel A. Tortorelli,et al.  Transient inverse heat conduction problem solutions via Newton's method , 1997 .

[21]  Juan C. Heinrich,et al.  Petrov-Galerkin method for multidimensional time-dependent convective-diffusion equations , 1987 .

[22]  I. O. Pandelidis,et al.  Optimization of injection molding design. Part I: Gate location optimization , 1990 .

[23]  Daniel A. Tortorelli,et al.  Inverse heat conduction problem solutions via second-order design sensitivities and newton's method , 1996 .

[24]  Daniel A. Tortorelli,et al.  Design of large-deformation steady elastoplastic manufacturing processes. Part II: Sensitivity analysis and optimization , 2000 .

[25]  Nicholas Zabaras,et al.  A sensitivity analysis for the optimal design of metal-forming processes , 1996 .

[26]  C. L. Tucker,et al.  Fundamentals of Computer Modeling for Polymer Processing , 1989 .

[27]  Sun-Yuan Tsay,et al.  Three‐dimensional path line tracking and residence time distribution in fishtail dies , 1993 .

[28]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[29]  Ramana V. Grandhi,et al.  Sensitivity analysis based preform die shape design for net-shape forging , 1997 .

[30]  Ta-Jo Liu,et al.  A unified lubrication approach for the design of a coat-hanger die , 1994 .

[31]  Somnath Ghosh,et al.  A new approach to optimal design of multi-stage metal forming processes with micro genetic algorithms , 1997 .

[32]  Creto Augusto Vidal,et al.  Analysis and optimization of weakly coupled thermoelastoplastic systems with applications to weldment design , 1995 .

[33]  Jean-Loup Chenot,et al.  OPTIMAL DESIGN FOR NON-STEADY-STATE METAL FORMING PROCESSES. II: APPLICATION OF SHAPE OPTIMIZATION IN FORGING , 1996 .

[34]  S. F. Shen,et al.  A finite-element/finite-difference simulation of the injection-molding filling process , 1980 .

[35]  Michał Kleiber,et al.  Sensitivity analysis of metal forming processes involving frictional contact in steady state , 1996 .

[36]  E. Mitsoulis,et al.  Deformation Fields and Residence Time Distributions in Polymer Melt Flows , 1990 .

[37]  R. V. Grandhi,et al.  Design of Forging Process Parameters With Deformation and Temperature Constraints , 1996 .

[38]  Wen-Bin Young,et al.  Gate Location Optimization in Liquid Composite Molding Using Genetic Algorithms , 1994 .

[39]  R. Grandhi,et al.  Reliability-based structural optimization using improved two-point adaptive nonlinear approximations , 1998 .

[40]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[41]  D. Tortorelli,et al.  Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity , 1994 .

[42]  Douglas E. Smith,et al.  Analysis and sensitivity analysis for polymer injection and compression molding , 1998 .

[43]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[44]  Frithiof I. Niordson,et al.  Optimal design of elastic plates with a constraint on the slope of the thickness function , 1983 .

[45]  Daniel A. Tortorelli,et al.  Optimal design of nonlinear parabolic systems. Part II: Variable spatial domain with applications to casting optimization , 1994 .

[46]  Michał Kleiber,et al.  Sensitivity of forming processes to shape parameters , 1996 .

[47]  Yildiz Bayazitoglu,et al.  Laser flash thermal diffusivity determination procedure for high temperature liquid metals , 1992 .

[48]  Vaughan R Voller,et al.  Streamline Upwind Scheme for Control-Volume Finite Elements, Part II. Implementation and Comparison with the Supg Finite-Element Scheme , 1992 .

[49]  K. Huebner The finite element method for engineers , 1975 .

[50]  Antoinette M. Maniatty,et al.  Shape Sensitivity Analysis for Steady Metal-Forming Processes , 1996 .

[51]  Daniel A. Tortorelli,et al.  Optimal design for polymer extrusion. Part II: Sensitivity analysis for weakly-coupled nonlinear steady-state systems , 1998 .

[52]  Raghavan Srinivasan,et al.  Optimum Design of Forging Die Shapes Using Nonlinear Finite Element Analysis , 1993 .

[53]  Daniel A. Tortorelli,et al.  Optimal design of nonlinear parabolic systems. Part I: Fixed spatial domain with applications to process optimization , 1994 .

[54]  Daniel A. Tortorelli,et al.  Optimal riser design for metal castings , 1995 .

[55]  R. Haftka,et al.  Elements of Structural Optimization , 1984 .