Tonian Carbonates Record Phosphate‐Rich Shallow Seas

The early‐middle Neoproterozoic is thought to have witnessed significant perturbations to marine P cycling, in turn facilitating the rise of eukaryote‐dominated primary production. However, with few robust constraints on aqueous P concentrations, current understanding of Neoproterozoic P cycling is generally model‐dependent. To provide new geochemical constraints, we combined microanalytical data sets with solid‐state Nuclear Magnetic Resonance, synchrotron‐based X‐ray Absorption Near Edge Structure spectroscopy, and micro‐X‐ray Fluorescence imaging to characterize the speciation and distribution of P in Tonian shallow‐water carbonate rocks. These data reflect shallow water phosphate concentrations 10–100× higher than modern systems, supporting the hypothesis that tectonically‐driven influxes in P periodically initiated kinetically‐controlled CaCO3 deposition, in turn destabilizing marine carbonate chemistry, climate, and nutrient inventories. Alongside these observations, a new compilation and statistical analysis of mudstone geochemistry data indicates that, in parallel, Corg and P burial increased across later Tonian continental margins until becoming decoupled at the close of the Tonian, implicating widespread N‐limitation triggered by increasing atmospheric O2.

[1]  Rachel Reid,et al.  Nitrate limitation in early Neoproterozoic oceans delayed the ecological rise of eukaryotes , 2023, Science advances.

[2]  S. Sharoni,et al.  Rates of seafloor and continental weathering govern Phanerozoic marine phosphate levels , 2022, Nature Geoscience.

[3]  N. Planavsky,et al.  A sedimentary record of the evolution of the global marine phosphorus cycle , 2022, Geobiology.

[4]  B. Phillips,et al.  Characterization and Geological Implications of Precambrian Calcite‐Hosted Phosphate , 2022, Geophysical Research Letters.

[5]  N. Tosca,et al.  Marine phosphate availability and the chemical origins of life on Earth , 2022, Nature Communications.

[6]  N. Planavsky,et al.  Uranium isotope evidence for extensive shallow water anoxia in the early Tonian oceans , 2022, Earth and Planetary Science Letters.

[7]  L. Wu,et al.  A Bayesian Approach to Inferring Depositional Ages Applied to a Late Tonian Reference Section in Svalbard , 2022, Frontiers in Earth Science.

[8]  J. Bartley,et al.  Molar-Tooth Structure as a Window into the Deposition and Diagenesis of Precambrian Carbonate , 2022, Annual Review of Earth and Planetary Sciences.

[9]  Phoebe A. Cohen,et al.  The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. , 2021, Trends in ecology & evolution.

[10]  A. Knoll,et al.  The Sedimentary Geochemistry and Paleoenvironments Project , 2021, Geobiology.

[11]  A. Knoll,et al.  Cyanobacteria and biogeochemical cycles through Earth history. , 2021, Trends in microbiology.

[12]  D. Canfield,et al.  Curation and Analysis of Global Sedimentary Geochemical Data to Inform Earth History , 2021, GSA Today.

[13]  Weiqi Wang,et al.  Development of carbonate-associated phosphate (CAP) as a proxy for reconstructing ancient ocean phosphate levels , 2021 .

[14]  A. Czaja,et al.  Phosphatic scales in vase‐shaped microfossil assemblages from Death Valley, Grand Canyon, Tasmania, and Svalbard , 2021, Geobiology.

[15]  M. Dietzel,et al.  Effect of temperature on the transformation of amorphous calcium magnesium carbonate with near-dolomite stoichiometry into high Mg-calcite , 2021 .

[16]  D. Johnston,et al.  Phanerozoic radiation of ammonia oxidizing bacteria , 2021, Scientific Reports.

[17]  N. Planavsky,et al.  Nutrient Supply to Planetary Biospheres From Anoxic Weathering of Mafic Oceanic Crust , 2020, Geophysical Research Letters.

[18]  Samuel M. Webb,et al.  SIXpack: a graphical user interface for XAS analysis using IFEFFIT , 2020, International Tables for Crystallography.

[19]  N. Tosca,et al.  Experimental constraints on nonskeletal CaCO3 precipitation from Proterozoic seawater , 2020, Geology.

[20]  N. Tosca,et al.  Mineralogical constraints on Neoproterozoic pCO2 and marine carbonate chemistry , 2020 .

[21]  A. Knoll,et al.  Ediacaran reorganization of the marine phosphorus cycle , 2020, Proceedings of the National Academy of Sciences.

[22]  T. Lenton,et al.  Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen , 2020, Nature Geoscience.

[23]  G. Shields,et al.  Reconstructing Tonian seawater 87Sr/86Sr using calcite microspar , 2020, Geology.

[24]  A. Knoll,et al.  Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle , 2020, American Journal of Science.

[25]  A. Knoll,et al.  Carbonates before skeletons: A database approach , 2020 .

[26]  E. Trower,et al.  The Enigma of Neoproterozoic Giant Ooids—Fingerprints of Extreme Climate? , 2019, Geophysical Research Letters.

[27]  M. Kunzmann,et al.  Linking the Bitter Springs carbon isotope anomaly and early Neoproterozoic oxygenation through I/[Ca + Mg] ratios , 2019, Chemical Geology.

[28]  D. Stolper,et al.  Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels , 2019, Proceedings of the National Academy of Sciences.

[29]  N. Tosca,et al.  Fe(II)-carbonate precipitation kinetics and the chemistry of anoxic ferruginous seawater , 2019, Earth and Planetary Science Letters.

[30]  Phoebe A. Cohen,et al.  It's a protist-eat-protist world: recalcitrance, predation, and evolution in the Tonian-Cryogenian ocean. , 2018, Emerging topics in life sciences.

[31]  E. Sperling,et al.  The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an "Explosion". , 2018, Integrative and comparative biology.

[32]  G. Halverson,et al.  Dating the late Proterozoic stratigraphic record. , 2018, Emerging topics in life sciences.

[33]  A. Bekker,et al.  Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity , 2018, Nature.

[34]  B. Tutolo,et al.  Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation , 2018 .

[35]  D. Stolper,et al.  A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts , 2018, Nature.

[36]  A. Maloof,et al.  The Tonian-Cryogenian transition in Northeastern Svalbard , 2017, Precambrian Research.

[37]  F. Macdonald,et al.  Cryogenian of Yukon , 2017, Precambrian Research.

[38]  E. Tziperman,et al.  Snowball Earth climate dynamics and Cryogenian geology-geobiology , 2017, Science Advances.

[39]  Yosuke Hoshino,et al.  The rise of algae in Cryogenian oceans and the emergence of animals , 2017, Nature.

[40]  S. Gleeson,et al.  New U-Pb constraints on the age of the Little Dal Basalts and Gunbarrel-related volcanism in Rodinia , 2017 .

[41]  N. Tosca,et al.  Controlled hydroxyapatite biomineralization in an ~810 million-year-old unicellular eukaryote , 2017, Science Advances.

[42]  H. Agić,et al.  A Tonian age for the Visingsö Group in Sweden constrained by detrital zircon dating and biochronology: implications for evolutionary events , 2017, Geological Magazine.

[43]  S. Poulton Biogeochemistry: Early phosphorus redigested , 2017 .

[44]  Y. Goddéris,et al.  Paleogeographic forcing of the strontium isotopic cycle in the Neoproterozoic , 2017 .

[45]  W. Fischer,et al.  Evolution of the global phosphorus cycle , 2016, Nature.

[46]  M. Kunzmann,et al.  Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth , 2016 .

[47]  N. Planavsky,et al.  A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic , 2016 .

[48]  K. Muylaert,et al.  Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: A study on chlorophyll fluorescence and electron transport , 2016 .

[49]  S. Porter Tiny vampires in ancient seas: evidence for predation via perforation in fossils from the 780–740 million-year-old Chuar Group, Grand Canyon, USA , 2016, Proceedings of the Royal Society B: Biological Sciences.

[50]  Prepared Standard methods for the examination of water and wastewater , 2016 .

[51]  A. Niedermayr,et al.  Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds , 2015 .

[52]  A. Knoll,et al.  Stratigraphic evolution of the Neoproterozoic Callison Lake Formation: Linking the break-up of Rodinia to the Islay carbon isotope excursion , 2015, American Journal of Science.

[53]  L. Derry Causes and consequences of mid‐Proterozoic anoxia , 2015 .

[54]  I. Khattech,et al.  Standard enthalpy, entropy and Gibbs free energy of formation of “B” type carbonate fluorapatites , 2015 .

[55]  A. Knoll,et al.  Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation , 2015, Nature.

[56]  A. Bekker,et al.  Thick sulfate evaporite accumulations marking a mid-Neoproterozoic oxygenation event (Ten Stone Formation, Northwest Territories, Canada) , 2015 .

[57]  F. Horton Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? , 2015 .

[58]  M. Santosh,et al.  Mantle plumes, supercontinents, intracontinental rifting and mineral systems , 2015 .

[59]  A. Maloof,et al.  Stratigraphy and geochronology of the Tambien Group, Ethiopia: Evidence for globally synchronous carbon isotope change in the Neoproterozoic , 2015 .

[60]  L. Schwendenmann,et al.  Quantification of octacalcium phosphate, authigenic apatite and detrital apatite in coastal sediments using differential dissolution and standard addition , 2014 .

[61]  R. Giegengack,et al.  Analyses of fluid inclusions in Neoproterozoic marine halite provide oldest measurement of seawater chemistry , 2014 .

[62]  N. Butterfield,et al.  Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation , 2013 .

[63]  D. Schrag,et al.  Regulation of atmospheric oxygen during the Proterozoic , 2012 .

[64]  A. Knoll,et al.  Scale Microfossils from the Mid-Neoproterozoic Fifteenmile Group, Yukon Territory , 2012, Journal of Paleontology.

[65]  D. Schrag,et al.  Uncovering the Neoproterozoic carbon cycle , 2012, Nature.

[66]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[67]  I. McNulty,et al.  The MicroAnalysis Toolkit: X‐ray Fluorescence Image Processing Software , 2011 .

[68]  Raymond T. Pierrehumbert,et al.  Climate of the Neoproterozoic , 2011 .

[69]  A. Knoll,et al.  Sedimentary talc in Neoproterozoic carbonate successions , 2010 .

[70]  David S. Jones,et al.  Calibrating the Cryogenian , 2010, Science.

[71]  F. Macdonald,et al.  Neoproterozoic and early Paleozoic correlations in the western Ogilvie Mountains, Yukon , 2010 .

[72]  D. Long,et al.  Basin architecture and syndepositional fault activity during deposition of the Neoproterozoic Mackenzie Mountains Supergroup, Northwest Territories, Canada , 2008 .

[73]  K. Forchhammer,et al.  Ammonia Triggers Photodamage of Photosystem II in the Cyanobacterium Synechocystis sp. Strain PCC 68031[OA] , 2008, Plant Physiology.

[74]  K. Karlstrom,et al.  Assembly, configuration, and break-up history of Rodinia: A synthesis , 2008 .

[75]  A. Maloof,et al.  Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater , 2007 .

[76]  D. Sumner,et al.  Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South Africa. II: A wave‐induced fluid flow model , 2006 .

[77]  D. Sumner,et al.  Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South Africa. I: Constraints on microcrystalline CaCO3 precipitation , 2006 .

[78]  D. Schrag,et al.  Combined paleomagnetic, isotopic, and stratigraphic evidence for true polar wander from the Neoproterozoic Akademikerbreen Group, Svalbard, Norway , 2006 .

[79]  G. Halverson A Neoproterozoic Chronology , 2006 .

[80]  D. Schrag,et al.  Toward a Neoproterozoic composite carbon-isotope record , 2005 .

[81]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[82]  S. Arnórsson,et al.  Precipitation of poorly crystalline antigorite under hydrothermal conditions , 2005 .

[83]  P. Falkowski,et al.  The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean , 2005 .

[84]  S. Blomqvist,et al.  Inorganic formation of apatite in brackish seawater from the Baltic Sea: an experimental approach , 2004 .

[85]  S. Harlan,et al.  Gunbarrel mafic magmatic event: A key 780 Ma time marker for Rodinia plate reconstructions , 2003 .

[86]  K. Caldeira,et al.  Carbonate Deposition, Climate Stability, and Neoproterozoic Ice Ages , 2003, Science.

[87]  D. Kile,et al.  On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion , 2003 .

[88]  F. Mackenzie,et al.  Experimental Study of Igneous and Sedimentary Apatite Dissolution: Control of pH, Distance from Equilibrium, and Temperature on Dissolution Rates , 2003 .

[89]  Ingvi Gunnarsson,et al.  Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat , 2000 .

[90]  O. Pokrovsky,et al.  Unseeded precipitation of calcium and magnesium phosphates from modified seawater solutions , 1999 .

[91]  Toby Tyrrell,et al.  The relative influences of nitrogen and phosphorus on oceanic primary production , 1999, Nature.

[92]  Awwa,et al.  Standard Methods for the examination of water and wastewater , 1999 .

[93]  F. Millero,et al.  A Chemical Equilibrium Model for Natural Waters , 1998 .

[94]  G. Narbonne,et al.  Molar-tooth carbonates: shallow subtidal facies of the mid- to late Proterozoic , 1998 .

[95]  T. Lyons,et al.  MOLAR-TOOTH' STRUCTURES : A GEOCHEMICAL PERSPECTIVE ON A PROTEROZOIC ENIGMA , 1998 .

[96]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[97]  F. Dudás,et al.  Geochemistry of the Little Dal basalts: continental tholeiites from the Mackenzie Mountains, Northwest Territories, Canada , 1997 .

[98]  G. Muyzer,et al.  Skeletal matrices, muci, and the origin of invertebrate calcification. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[99]  P. Van Cappellen,et al.  Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine Productivity , 1996, Science.

[100]  C. Jana,et al.  19F NMR spectroscopy of fluoridated apatites , 1995 .

[101]  Michael Whitfield,et al.  A chemical model of seawater including dissolved ammonia and the stoichiometric dissociation constant of ammonia in estuarine water and seawater from −2 to 40°C , 1995 .

[102]  F. Millero,et al.  The chemistry of the anoxic waters in the Framvaren Fjord, Norway , 1995 .

[103]  Ellery D. Ingall,et al.  Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus , 1994 .

[104]  R. Jahnke,et al.  Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters , 1994 .

[105]  D. Canfield,et al.  Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat , 1993, Geochimica et cosmochimica acta.

[106]  G. Narbonne,et al.  Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada , 1993 .

[107]  L. Delmotte,et al.  19F MAS-NMR Study of Structural Fluorine in Some Natural and Synthetic 2:1 Layer Silicates , 1992 .

[108]  A. Knoll,et al.  Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard). , 1991, Precambrian research.

[109]  A. Knoll,et al.  Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen. , 1990, American journal of science.

[110]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[111]  W. E. Brown,et al.  Octacalcium Phosphate Solubility Product from 4 to 37 °C , 1988, Journal of Research of the National Bureau of Standards.

[112]  A. Mucci Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: Quantitative influence of orthophosphate ions , 1986 .

[113]  R. Jahnke The synthesis and solubility of carbonate fluorapatite , 1984 .

[114]  A. Mucci The solubility of calcite and aragonite in seawater at various salinities , 1983 .

[115]  J. D. Aitken,et al.  Paleomagnetism of the Little Dal lavas, Mackenzie Mountains, Northwest Territories, Canada , 1982 .

[116]  J. D. Aitken Stratigraphy and Sedimentology of the Upper Proterozoic Little Dal Group, Mackenzie Mountains, Northwest Territories , 1981 .

[117]  Y. Tardy,et al.  Generalized residual alkalinity concept; application to prediction of the chemical evolution of natural waters by evaporation , 1980 .

[118]  M. Wedborg,et al.  Stability constants of phosphoric acid in seawater of 5–40‰ salinity and temperatures of 5–25°C , 1979 .

[119]  A. Abeliovich,et al.  Toxicity of ammonia to algae in sewage oxidation ponds , 1976, Applied and environmental microbiology.

[120]  S. Chien Ion-activity products of some apatite minerals , 1972 .

[121]  C. Wilson The Upper Middle Hecla Hoek Rocks of Ny Friesland, Spitsbergen , 1961, Geological Magazine.