Bisimulation quantifiers for modal logics

Modal logics have found applications in many different contexts. For example, epistemic modal logics can be used to reason about security protocols, temporal modal logics can be used to reason about the correctness of distributed systems and propositional dynamic logic can reason about the correctness of programs. However, pure modal logic is expressively weak and cannot represent many interesting secondorder properties that are expressible, for example, in the μ-calculus.

[1]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[2]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[3]  Ruth C. Barcan The Deduction Theorem in a Functional Calculus of First Order Based on Strict Implication , 1946 .

[4]  J. Armstrong Knowledge and Belief , 1953 .

[5]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[6]  Saul Kripke,et al.  A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.

[7]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[8]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[9]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[10]  Krister Segerberg,et al.  An essay in classical modal logic , 1971 .

[11]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[12]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[13]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[14]  L. Maksimova Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras , 1977 .

[15]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[16]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[17]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[18]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[19]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[20]  Leslie Lamport,et al.  Specifying Concurrent Program Modules , 1983, TOPL.

[21]  Aravinda Prasad Sistla,et al.  Theoretical issues in the design and verification of distributed systems , 1983 .

[22]  A. Prasad Sistla,et al.  Deciding Full Branching Time Logic , 1985, Inf. Control..

[23]  Alexei L. Semenov,et al.  Decidability of Monadic Theories , 1984, MFCS.

[24]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[25]  Saharon Shelah,et al.  The Decision Problem for Branching Time Logic , 1985, J. Symb. Log..

[26]  Amir Pnueli,et al.  Applications of Temporal Logic to the Specification and Verification of Reactive Systems: A Survey of Current Trends , 1986, Current Trends in Concurrency.

[27]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[28]  David E. Muller,et al.  Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..

[29]  Pierre Wolper,et al.  The Complementation Problem for Büchi Automata with Appplications to Temporal Logic , 1987, Theor. Comput. Sci..

[30]  Martín Abadi,et al.  The Existence of Refinement Mappings , 1988, LICS.

[31]  Joseph Y. Halpern,et al.  The Complexity of Reasoning about Knowledge and Time. I. Lower Bounds , 1989, J. Comput. Syst. Sci..

[32]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[33]  Nils Klarlund,et al.  Progress measures for complementation omega -automata with applications to temporal logic , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[34]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[35]  Mads Dam,et al.  CTL* and ECTL* as Fragments of the Modal µ-Calculus , 1992, CAAP.

[36]  Dov M. Gabbay,et al.  Adding a temporal dimension to a logic system , 1992, J. Log. Lang. Inf..

[37]  Andrew M. Pitts,et al.  On an interpretation of second order quantification in first order intuitionistic propositional logic , 1992, Journal of Symbolic Logic.

[38]  Dov M. Gabbay,et al.  Temporal Logic: Mathematical Foundations and Computational Aspects: Volume 2 , 1994 .

[39]  Silvio Ghilardi,et al.  A Sheaf Representation and Duality for Finitely Presenting Heyting Algebras , 1995, J. Symb. Log..

[40]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs IX: Machines and their Behaviours , 1995, Theor. Comput. Sci..

[41]  D. Peled,et al.  Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 1 , 1995 .

[42]  David E. Muller,et al.  Simulating Alternating Tree Automata by Nondeterministic Automata: New Results and New Proofs of the Theorems of Rabin, McNaughton and Safra , 1995, Theor. Comput. Sci..

[43]  Amir Pnueli,et al.  A complete proof systems for QPTL , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[44]  Orna Kupferman Augmenting Branching Temporal Logics with Existential Quantification over Atomic Propositions , 1995, CAV.

[45]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[46]  David Janin,et al.  Automata for the mu-calculus and Related Results , 1995 .

[47]  Igor Walukiewicz,et al.  On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic , 1996, CONCUR.

[48]  A. Visser Bisimulations, model descriptions and propositional quantifiers , 1996 .

[49]  Igor Walukiewicz,et al.  Pushdown Processes: Games and Model-Checking , 1996, Inf. Comput..

[50]  A. Visser Uniform interpolation and layered bisimulation , 1996 .

[51]  Didier Caucal,et al.  On infinite transition graphs having a decidable monadic theory , 1996, Theor. Comput. Sci..

[52]  Giacomo Lenzi A Hierarchy Theorem for the µ-Calculus , 1996, ICALP.

[53]  Philip Kremer On the Complexity of Propositional Quantification in Intuitionistic Logic , 1997, J. Symb. Log..

[54]  Wieslaw Zielonka,et al.  Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..

[55]  Marcin Jurdziński,et al.  Deciding the Winner in Parity Games is in UP \cap co-Up , 1998, Inf. Process. Lett..

[56]  Colin Stirling,et al.  The Joys of Bisimulation , 1998, MFCS.

[57]  Julian C. Bradfield The Modal µ-Calculus Alternation Hierarchy is Strict , 1998, Theor. Comput. Sci..

[58]  Klaus Barthelmann,et al.  When Can an Equational Simple Graph Be Generated by Hyperedge Replacement? , 1998, MFCS.

[59]  Moshe Y. Vardi Reasoning about The Past with Two-Way Automata , 1998, ICALP.

[60]  Giovanna DAgostino Modal Logic and non-well-founded Set Theory: translation, bisimulation, interpolation , 1998 .

[61]  Julian C. Bradfield Simplifying the Modal Mu-Calculus Alternation Hierarchy , 1998, STACS.

[62]  Optimal Bounds for Transformations of omega-Automata , 1999, FSTTCS.

[63]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[64]  Orna Kupferman,et al.  An Automata-Theoretic Approach to Reasoning about Infinite-State Systems , 2000, CAV.

[65]  Silvio Ghilardi,et al.  From Bisimulation Quantifiers to Classifying Toposes , 2000, Advances in Modal Logic.

[66]  Marco Hollenberg,et al.  Logical questions concerning the μ-calculus: Interpolation, Lyndon and Łoś-Tarski , 2000, Journal of Symbolic Logic.

[67]  Igor Walukiewicz,et al.  Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..

[68]  Patrick Blackburn,et al.  Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto , 2000, Log. J. IGPL.

[69]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[70]  Thomas Wilke,et al.  Alternating tree automata, parity games, and modal {$\mu$}-calculus , 2001 .

[71]  Ursula Goltz,et al.  Refinement of actions and equivalence notions for concurrent systems , 2001, Acta Informatica.

[72]  Tim French Decidability of Quantifed Propositional Branching Time Logics , 2001, Australian Joint Conference on Artificial Intelligence.

[73]  Kaile Su,et al.  Modal Logics with a Linear Hierarchy of Local Propositional Quantifiers , 2002, Advances in Modal Logic.

[74]  Mark Reynolds,et al.  A Sound and Complete Proof System for QPTL , 2002, Advances in Modal Logic.

[75]  Philippe Schnoebelen,et al.  The Complexity of Temporal Logic Model Checking , 2002, Advances in Modal Logic.

[76]  Igor Walukiewicz Monadic second-order logic on tree-like structures , 2002, Theor. Comput. Sci..

[77]  Jan Obdrzálek,et al.  Fast Mu-Calculus Model Checking when Tree-Width Is Bounded , 2003, CAV.

[78]  Tim French Decidability of Propositionally Quantified Logics of Knowledge , 2003, Australian Conference on Artificial Intelligence.

[79]  Thierry Cachat,et al.  Higher Order Pushdown Automata, the Caucal Hierarchy of Graphs and Parity Games , 2003, ICALP.

[80]  Wolfgang Thomas,et al.  Constructing Infinite Graphs with a Decidable MSO-Theory , 2003, MFCS.

[81]  Joseph Y. Halpern,et al.  Complete Axiomatizations for Reasoning about Knowledge and Time , 2002, SIAM J. Comput..

[82]  Mark Reynolds,et al.  Axioms for Logics of Knowledge and Past Time: Synchrony and Unique Initial States , 2004, Advances in Modal Logic.

[83]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[84]  B. T. Cate,et al.  Model theory for extended modal languages , 2005 .

[85]  Giacomo Lenzi,et al.  An axiomatization of bisimulation quantifiers via the mu-calculus , 2005, Theor. Comput. Sci..

[86]  Tim French Bisimulation Quantified Logics: Undecidability , 2005, FSTTCS.

[87]  Tim French Bisimulation Quantified Modal Logics: Decidability , 2006, Advances in Modal Logic.

[88]  Carsten Lutz,et al.  Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.

[89]  Shmuel Safra,et al.  Exponential Determinization for omega-Automata with a Strong Fairness Acceptance Condition , 2006, SIAM J. Comput..

[90]  Kit Fine,et al.  Propositional quantifiers in modal logic1 , 2008 .