Gated Heterogeneous Graph Representation Learning for Shop Search in E-commerce

In e-commerce search, vectorized matching is the most important approach besides lexical matching, where learning vector representations for entities (e.g., query, item, shop) plays a crucial role. In this work, we focus on vectorized search matching model for shop search in Taobao. Unlike item search, shop search is faced with serious behavior sparsity and long-tail problem. To tackle this, we take the first step to transfer knowledge from item search, i.e., leveraging items purchased under a query and the shops they belong to. Moreover, we propose a novel gated heterogeneous graph learning model (named GHL) to derive vector representations for entities. Both first-order and second-order proximity of queries and shops are exploited to fully mine the heterogeneous relationships. And to relieve long-tail phenomenon, we devise an innovative gated neighbor aggregation scheme where each type of entities (i.e., hot ones and long-tail ones) can benefit from the heterogeneous graph in an automatic way. Finally, the whole framework is jointly trained in an end-to-end fashion. Offline evaluation results on real-world data of Taobao shop search platform demonstrate that the proposed model outperforms existing graph based methods, and online A/B tests show that it is highly effective and achieves significant CTR improvements.