Curl-Conforming Hierarchical Vector Bases for Triangles and Tetrahedra

A new family of hierarchical vector bases is proposed for triangles and tetrahedra. These functions span the curl-conforming reduced-gradient spaces of Nédélec. The bases are constructed from orthogonal scalar polynomials to enhance their linear independence, which is a simpler process than an orthogonalization applied to the final vector functions. Specific functions are tabulated to order 6.5. Preliminary results confirm that the new bases produce reasonably well-conditioned matrices.

[1]  Raj Mittra,et al.  The biconjugate gradient method for electromagnetic scattering , 1990 .

[2]  Hierarchical polynomials and vector elements for finite methods , 2009, 2009 International Conference on Electromagnetics in Advanced Applications.

[3]  P. Ingelstrom,et al.  A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes , 2006, IEEE Transactions on Microwave Theory and Techniques.

[4]  J. P. Webb,et al.  Hierarchal vector boundary elements and p-adaption for 3-D electromagnetic scattering , 1997 .

[5]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[6]  Roberto D. Graglia,et al.  Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  J. P. Webb,et al.  Hierarchal Scalar and vector Tetrahedra , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.

[9]  J. P. Webb Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements , 1999 .

[10]  A. Peterson,et al.  Scale Factors and Matrix Conditioning Associated With Triangular-Cell Hierarchical Vector Basis Functions , 2010, IEEE Antennas and Wireless Propagation Letters.

[11]  J. P. Webb,et al.  Hierarchal triangular edge elements using orthogonal polynomials , 1997, IEEE Antennas and Propagation Society International Symposium 1997. Digest.

[12]  M. Kasper,et al.  Orthogonal Hierarchical NÉdÉlec Elements , 2008, IEEE Transactions on Magnetics.

[13]  Jon P. Webb Matching a Given Field Using Hierarchal Vector Basis Functions , 2004 .

[14]  L. S. Andersen,et al.  Condition numbers for various FEM matrices , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[15]  John L. Volakis,et al.  Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics , 1999 .

[16]  Mark Ainsworth,et al.  Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .

[17]  J. Schöberl,et al.  High order Nédélec elements with local complete sequence properties , 2005 .

[18]  Din-Kow Sun,et al.  Construction of Nearly Orthogonal Nedelec Bases for Rapid Convergence with Multilevel Preconditioned Solvers , 2001, SIAM J. Sci. Comput..

[19]  L. S. Andersen,et al.  Hierarchical tangential vector finite elements for tetrahedra , 1998 .

[20]  Jon P. Webb,et al.  Hierarchal triangular elements using orthogonal polynomials , 1995 .

[21]  Mark Ainsworth,et al.  Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .

[22]  A. Peterson,et al.  A Rationale for p-Refinement with the Vector Helmholtz Equation and Two Dimensional Vector Finite Elements , 2004 .

[23]  Jin-Fa Lee,et al.  Hierarchical vector finite elements for analyzing waveguiding structures , 2003 .

[24]  Andrew F. Peterson,et al.  Fully Conforming Hierarchical Vector Bases for Finite Methods , 2009 .