Curl-Conforming Hierarchical Vector Bases for Triangles and Tetrahedra
暂无分享,去创建一个
[1] Raj Mittra,et al. The biconjugate gradient method for electromagnetic scattering , 1990 .
[2] Hierarchical polynomials and vector elements for finite methods , 2009, 2009 International Conference on Electromagnetics in Advanced Applications.
[3] P. Ingelstrom,et al. A new set of H(curl)-conforming hierarchical basis functions for tetrahedral meshes , 2006, IEEE Transactions on Microwave Theory and Techniques.
[4] J. P. Webb,et al. Hierarchal vector boundary elements and p-adaption for 3-D electromagnetic scattering , 1997 .
[5] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[6] Roberto D. Graglia,et al. Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .
[7] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[8] J. P. Webb,et al. Hierarchal Scalar and vector Tetrahedra , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.
[9] J. P. Webb. Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements , 1999 .
[10] A. Peterson,et al. Scale Factors and Matrix Conditioning Associated With Triangular-Cell Hierarchical Vector Basis Functions , 2010, IEEE Antennas and Wireless Propagation Letters.
[11] J. P. Webb,et al. Hierarchal triangular edge elements using orthogonal polynomials , 1997, IEEE Antennas and Propagation Society International Symposium 1997. Digest.
[12] M. Kasper,et al. Orthogonal Hierarchical NÉdÉlec Elements , 2008, IEEE Transactions on Magnetics.
[13] Jon P. Webb. Matching a Given Field Using Hierarchal Vector Basis Functions , 2004 .
[14] L. S. Andersen,et al. Condition numbers for various FEM matrices , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).
[15] John L. Volakis,et al. Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics , 1999 .
[16] Mark Ainsworth,et al. Hierarchic finite element bases on unstructured tetrahedral meshes , 2003 .
[17] J. Schöberl,et al. High order Nédélec elements with local complete sequence properties , 2005 .
[18] Din-Kow Sun,et al. Construction of Nearly Orthogonal Nedelec Bases for Rapid Convergence with Multilevel Preconditioned Solvers , 2001, SIAM J. Sci. Comput..
[19] L. S. Andersen,et al. Hierarchical tangential vector finite elements for tetrahedra , 1998 .
[20] Jon P. Webb,et al. Hierarchal triangular elements using orthogonal polynomials , 1995 .
[21] Mark Ainsworth,et al. Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes , 2001 .
[22] A. Peterson,et al. A Rationale for p-Refinement with the Vector Helmholtz Equation and Two Dimensional Vector Finite Elements , 2004 .
[23] Jin-Fa Lee,et al. Hierarchical vector finite elements for analyzing waveguiding structures , 2003 .
[24] Andrew F. Peterson,et al. Fully Conforming Hierarchical Vector Bases for Finite Methods , 2009 .