Highly selective CO2 capture of an agw-type metal-organic framework with inserted amides: experimental and theoretical studies.

An amide-inserted metal-organic framework (NJU-Bai3) presents high storage and high selectivity toward CO(2) and combines these two interesting characters which strongly support our expectation that amide groups can significantly enhance the CO(2) binding ability and selectivity of MOFs.

[1]  A. Matzger,et al.  Porous crystal derived from a tricarboxylate linker with two distinct binding motifs. , 2007, Journal of the American Chemical Society.

[2]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[3]  P. Thallapally,et al.  Prussian blue analogues for CO(2) and SO(2) capture and separation applications. , 2010, Inorganic chemistry.

[4]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[5]  A. Torrisi,et al.  Functionalized MOFs for Enhanced CO2 Capture , 2010 .

[6]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[7]  Kimoon Kim,et al.  Highly selective carbon dioxide sorption in an organic molecular porous material. , 2010, Journal of the American Chemical Society.

[8]  S. Sandler,et al.  Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[9]  Randall Q. Snurr,et al.  Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules , 2009 .

[10]  Jian Zhang,et al.  High and selective CO2 uptake, H2storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1 , 2011 .

[11]  Jingui Duan,et al.  Controlling the shifting degree of interpenetrated metal-organic frameworks by modulator and temperature and their hydrogen adsorption properties. , 2011, Chemical communications.

[12]  Gérard Férey,et al.  Calculating Geometric Surface Areas as a Characterization Tool for Metal−Organic Frameworks , 2007 .

[13]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[14]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[15]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[16]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[17]  Bjørnar Arstad,et al.  Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide , 2008 .

[18]  C. Lastoskie Caging Carbon Dioxide , 2010, Science.

[19]  Mark Z. Jacobson,et al.  Review of solutions to global warming, air pollution, and energy security , 2009 .

[20]  Alexander M. Spokoyny,et al.  Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. , 2010, Chemical communications.

[21]  Hang Xing,et al.  Unprecedented interweaving of single-helical and unequal double-helical chains into chiral metal-organic open frameworks with multiwalled tubular structures. , 2007, Chemical communications.

[22]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[23]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[24]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[25]  Yanhu Wei,et al.  A single-crystalline microporous coordination polymer with mixed parallel and diagonal interpenetrating α-Po networks , 2011 .

[26]  S. Kitagawa,et al.  Pore surface engineering of microporous coordination polymers. , 2006, Chemical communications.

[27]  Bjørnar Arstad,et al.  CO2 absorption in aqueous solutions of alkanolamines: mechanistic insight from quantum chemical calculations. , 2007, The journal of physical chemistry. A.

[28]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[29]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[30]  Patrick Ryan,et al.  Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[31]  Carlos A. Grande,et al.  Carbon Molecular Sieves for Hydrocarbon Separations by Adsorption , 2005 .

[32]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[33]  C. Serre,et al.  Why hybrid porous solids capture greenhouse gases? , 2011, Chemical Society reviews.

[34]  Brian P. Johnson,et al.  Structures and properties of spherical 90-vertex fullerene-like nanoballs. , 2010, Chemistry.

[35]  Jie‐Peng Zhang,et al.  Nonclassical active site for enhanced gas sorption in porous coordination polymer. , 2010, Journal of the American Chemical Society.

[36]  Craig M. Brown,et al.  Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods , 2010 .

[37]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[38]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[39]  Christopher Matranga,et al.  Adsorption Properties of Hydrogen and Carbon Dioxide in Prussian Blue Analogues M3[Co(CN)6]2, M = Co, Zn , 2007 .

[40]  T. Groy,et al.  Establishing Microporosity in Open Metal−Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) , 1998 .

[41]  G. Shimizu,et al.  An amine-functionalized metal organic framework for preferential CO(2) adsorption at low pressures. , 2009, Chemical communications.

[42]  Dan Zhao,et al.  Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. , 2009, Journal of the American Chemical Society.

[43]  S. Xiang,et al.  A new MOF-505 analog exhibiting high acetylene storage. , 2009, Chemical communications.

[44]  A. Matzger,et al.  Gas and liquid phase adsorption in isostructural Cu3[biaryltricarboxylate]2 microporous coordination polymers. , 2011, Chemical communications.

[45]  Jun Zhang,et al.  Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture , 2008 .

[46]  H. Müller,et al.  In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2- and CO2-storage ability. , 2010, Angewandte Chemie.

[47]  Jihyun An,et al.  High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. , 2010, Journal of the American Chemical Society.

[48]  J. Bai,et al.  Synthesis of Inorganic Fullerene-Like Molecules , 2003, Science.

[49]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[50]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[51]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.