Recombinase-based conditional and reversible gene regulation via XTR alleles

[1]  Hans Clevers,et al.  Apc Restoration Promotes Cellular Differentiation and Reestablishes Crypt Homeostasis in Colorectal Cancer , 2015, Cell.

[2]  R. Jaenisch,et al.  Generating genetically modified mice using CRISPR/Cas-mediated genome engineering , 2014, Nature Protocols.

[3]  Viviana I. Risca,et al.  A conditional system to specifically link disruption of protein-coding function with reporter expression in mice. , 2014, Cell reports.

[4]  J. Downing,et al.  PTEN action in leukemia dictated by the tissue microenvironment , 2014, Nature.

[5]  D. Sabatini,et al.  A CREB3–ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens , 2013, Nature Cell Biology.

[6]  Joseph M. Cruz,et al.  Conditionals by inversion provide a universal method for the generation of conditional alleles , 2013, Proceedings of the National Academy of Sciences.

[7]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[8]  J. Carette,et al.  A Reporter Screen in a Human Haploid Cell Line Identifies CYLD as a Constitutive Inhibitor of NF-κB , 2013, PloS one.

[9]  J. Carette,et al.  Deciphering the Glycosylome of Dystroglycanopathies Using Haploid Screens for Lassa Virus Entry , 2013, Science.

[10]  A. Joyner,et al.  MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. , 2012, Cell reports.

[11]  W. Kaelin,et al.  Use and Abuse of RNAi to Study Mammalian Gene Function , 2012, Science.

[12]  Christof Fellmann,et al.  A pipeline for the generation of shRNA transgenic mice , 2012, Nature Protocols.

[13]  E. Moding,et al.  Generation of primary tumors with Flp recombinase in FRT-flanked p53 mice , 2011, Disease Models & Mechanisms.

[14]  J. Dye,et al.  Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 , 2011, Nature.

[15]  D. Sabatini,et al.  A haploid genetic screen identifies the major facilitator domain containing 2A (MFSD2A) transporter as a key mediator in the response to tunicamycin , 2011, Proceedings of the National Academy of Sciences.

[16]  Johannes Zuber,et al.  A Rapid and Scalable System for Studying Gene Function in Mice Using Conditional RNA Interference , 2011, Cell.

[17]  S. Elledge,et al.  Functional identification of optimized RNAi triggers using a massively parallel sensor assay. , 2011, Molecular cell.

[18]  Youngho Seo,et al.  Selective activation of p53-mediated tumour suppression in high-grade tumours , 2010, Nature.

[19]  Francisco J. Sánchez-Rivera,et al.  Stage-specific sensitivity to p53 restoration during lung cancer progression , 2010, Nature.

[20]  T. Jacks,et al.  Tissue-specific p19Arf regulation dictates the response to oncogenic K-ras , 2010, Proceedings of the National Academy of Sciences.

[21]  Carla P. Guimarães,et al.  Haploid Genetic Screens in Human Cells Identify Host Factors Used by Pathogens , 2009, Science.

[22]  T. Jacks,et al.  Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase , 2009, Nature Protocols.

[23]  P. Sharp,et al.  A system for Cre-regulated RNA interference in vivo , 2008, Proceedings of the National Academy of Sciences.

[24]  Jan Grimm,et al.  A spatially and temporally restricted mouse model of soft tissue sarcoma , 2007, Nature Medicine.

[25]  S. Lowe,et al.  Tissue-specific and reversible RNA interference in transgenic mice , 2007, Nature Genetics.

[26]  T. Jacks,et al.  Restoration of p53 function leads to tumour regression in vivo , 2007, Nature.

[27]  Carlos Cordon-Cardo,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2007, Nature.

[28]  Gerard I. Evan,et al.  Modeling the Therapeutic Efficacy of p53 Restoration in Tumors , 2006, Cell.

[29]  Nir Hacohen,et al.  Minimizing the risk of reporting false positives in large-scale RNAi screens , 2006, Nature Methods.

[30]  L. Lim,et al.  Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. , 2006, RNA.

[31]  P. Jänne,et al.  The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. , 2006, Cancer cell.

[32]  H. Varmus,et al.  Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. , 2006, Genes & development.

[33]  Theresa A. Storm,et al.  Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways , 2006, Nature.

[34]  T. Jacks,et al.  The differential effects of mutant p53 alleles on advanced murine lung cancer. , 2005, Cancer research.

[35]  S. Lowe,et al.  Probing tumor phenotypes using stable and regulated synthetic microRNA precursors , 2005, Nature Genetics.

[36]  G. Evan,et al.  Temporal dissection of p53 function in vitro and in vivo , 2005, Nature Genetics.

[37]  Claudia Seisenberger,et al.  Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. DePinho,et al.  Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. , 2004, Cancer cell.

[39]  P. Chambon,et al.  A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse , 2003, Nature Biotechnology.

[40]  Patrick J. Paddison,et al.  An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo , 2003, Nature Genetics.

[41]  Mitchell D Schnall,et al.  Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. , 2002, Cancer cell.

[42]  S. Lowe,et al.  Dissecting p53 tumor suppressor functions in vivo. , 2002, Cancer cell.

[43]  H. Varmus,et al.  Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. , 2001, Genes & development.

[44]  T. Jacks,et al.  Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. , 2001, Genes & development.

[45]  A. Berns,et al.  Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer , 2001, Nature Genetics.

[46]  T. Jacks,et al.  Somatic activation of the K-ras oncogene causes early onset lung cancer in mice , 2001, Nature.

[47]  Philippe Soriano,et al.  Widespread recombinase expression using FLPeR (Flipper) mice , 2000, Genesis.

[48]  R. DePinho,et al.  Cellular Senescence Minireview Mitotic Clock or Culture Shock? , 2000, Cell.

[49]  Philippe Soriano,et al.  Epiblast‐restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra‐embryonic gene function , 2000, Genesis.

[50]  S. Lowe,et al.  INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. , 1999, Genes & development.

[51]  A. Bradley,et al.  Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis , 1992, Nature.

[52]  R. Weinberg,et al.  Effects of an Rb mutation in the mouse , 1992, Nature.

[53]  S. Cory,et al.  Myc oncogene activation in B and T lymphoid tumours , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[54]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[55]  R. DePinho,et al.  Cellular senescence: mitotic clock or culture shock? , 2000, Cell.