A note on lattice variant of thresholdness of Boolean functions

Lattice induced threshold function is a Boolean function determined by a particular linear combination of lattice elements. We prove that every isotone Boolean function is a lattice induced threshold function and vice versa. We give the generalization of this result to Boolean functions on a k-element set. 2010 Mathematics Subject Classification: 06E30

[1]  N. Aizenberg,et al.  Algebraic aspects of threshold logic , 1980 .

[2]  Peter L. Hammer,et al.  Boolean Functions , 2013, Discrete Applied Mathematics.

[3]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[4]  Haran Pilpel,et al.  Linear transformations of monotone functions on the discrete cube , 2009, Discret. Math..

[5]  E. K. Horváth Invariance Groups of Threshold Functions , 1994, Acta Cybern..

[6]  Peter L. Hammer,et al.  Boolean Functions - Theory, Algorithms, and Applications , 2011, Encyclopedia of mathematics and its applications.

[7]  Mariusz Grech,et al.  Regular symmetric groups of boolean functions , 2010, Discret. Math..

[8]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[9]  Lisa Hellerstein On generalized constraints and certificates , 2001, Discret. Math..

[10]  R. P. Dilworth,et al.  Algebraic theory of lattices , 1973 .

[11]  Robert O. Winder,et al.  Threshold logic , 1971, IEEE Spectrum.

[12]  Demetres Christofides,et al.  Influences of monotone Boolean functions , 2009, Discret. Math..