Extraordinary Off-Stoichiometric Bismuth Telluride for Enhanced n-Type Thermoelectric Power Factor.

Thermoelectrics directly converts waste heat into electricity and is considered a promising means of sustainable energy generation. While most of the recent advances in the enhancement of the thermoelectric figure of merit (ZT) resulted from a decrease in lattice thermal conductivity by nanostructuring, there have been very few attempts to enhance electrical transport properties, i.e., the power factor. Here we use nanochemistry to stabilize bulk bismuth telluride (Bi2Te3) that violates phase equilibrium, namely, phase-pure n-type K0.06Bi2Te3.18. Incorporated potassium and tellurium in Bi2Te3 far exceed their solubility limit, inducing simultaneous increase in the electrical conductivity and the Seebeck coefficient along with decrease in the thermal conductivity. Consequently, a high power factor of ∼43 μW cm-1 K-2 and a high ZT > 1.1 at 323 K are achieved. Our current synthetic method can be used to produce a new family of materials with novel physical and chemical characteristics for various applications.

[1]  U. Waghmare,et al.  High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence. , 2016, Journal of the American Chemical Society.

[2]  G. J. Snyder,et al.  Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p-Type Polycrystalline SnSe. , 2016, Journal of the American Chemical Society.

[3]  B. Vishal,et al.  The origin of low thermal conductivity in Sn1−xSbxTe: phonon scattering via layered intergrowth nanostructures , 2016 .

[4]  Geoffroy Hautier,et al.  Thinking Like a Chemist: Intuition in Thermoelectric Materials. , 2016, Angewandte Chemie.

[5]  Claudia Felser,et al.  Engineering half-Heusler thermoelectric materials using Zintl chemistry , 2016 .

[6]  M. Kanatzidis,et al.  Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. , 2016, Journal of the American Chemical Society.

[7]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[8]  Marco Buongiorno Nardelli,et al.  Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. , 2015, Nature materials.

[9]  D. Morelli,et al.  Better thermoelectrics through glass-like crystals. , 2015, Nature materials.

[10]  M. Kanatzidis,et al.  Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. , 2015, Journal of the American Chemical Society.

[11]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[12]  Jaeyoung Jang,et al.  All-inorganic nanocrystals as a glue for BiSbTe grains: design of interfaces in mesostructured thermoelectric materials. , 2014, Angewandte Chemie.

[13]  Hui Sun,et al.  High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. , 2014, Journal of the American Chemical Society.

[14]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[15]  M. Kanatzidis,et al.  High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials. , 2014, Journal of the American Chemical Society.

[16]  A. Grytsiv,et al.  n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0 , 2014 .

[17]  K. Hradil,et al.  Thermopower enhancement by encapsulating cerium in clathrate cages. , 2013, Nature materials.

[18]  O. Delaire,et al.  Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. , 2013, Nature nanotechnology.

[19]  Kang L. Wang,et al.  Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. , 2013, Nano letters.

[20]  Hao Li,et al.  High thermoelectric performance via hierarchical compositionally alloyed nanostructures. , 2013, Journal of the American Chemical Society.

[21]  M. Kanatzidis,et al.  High-performance tellurium-free thermoelectrics: all-scale hierarchical structuring of p-type PbSe-MSe systems (M = Ca, Sr, Ba). , 2013, Journal of the American Chemical Society.

[22]  M. Kanatzidis,et al.  Role of sodium doping in lead chalcogenide thermoelectrics. , 2013, Journal of the American Chemical Society.

[23]  Wolfgang Tremel,et al.  Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn(1-x)Fe(x)GeSe4. , 2013, Journal of the American Chemical Society.

[24]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[25]  Timothy P. Hogan,et al.  Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. , 2012, Journal of the American Chemical Society.

[26]  Qian Zhang,et al.  Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1-y)Se(y). , 2012, Journal of the American Chemical Society.

[27]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[28]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[29]  G. J. Snyder,et al.  Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu(2+x)Zn(1-x)GeSe4. , 2012, Journal of the American Chemical Society.

[30]  Richard W Siegel,et al.  A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.

[31]  T. Hyeon,et al.  n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. , 2012, Nano letters.

[32]  D. Morelli,et al.  Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. , 2011, Physical review letters.

[33]  M. Kanatzidis,et al.  High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. , 2011, Journal of the American Chemical Society.

[34]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[35]  M. Kanatzidis,et al.  Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe-PbS. , 2011, Journal of the American Chemical Society.

[36]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[37]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[38]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[39]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[40]  M. Kanatzidis,et al.  Nanostructures boost the thermoelectric performance of PbS. , 2011, Journal of the American Chemical Society.

[41]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[42]  Ctirad Uher,et al.  Structural order-disorder transitions and phonon conductivity of partially filled skutterudites. , 2010, Physical review letters.

[43]  W. S. Liu,et al.  Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. , 2010, Nano letters.

[44]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[45]  M. Kanatzidis,et al.  On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. , 2010, Journal of the American Chemical Society.

[46]  M. Kanatzidis,et al.  Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. , 2010, Journal of the American Chemical Society.

[47]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[48]  Eric S. Toberer,et al.  Characterization and analysis of thermoelectric transport in n-type Ba_(8)Ga_(16−x)Ge_(30+x) , 2009 .

[49]  Z. Yao,et al.  Large scale highly crystalline Bi2Te3 nanotubes through solution phase nanoscale Kirkendall effect fabrication. , 2009, Chemical communications.

[50]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[51]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[52]  Kim Lefmann,et al.  Avoided crossing of rattler modes in thermoelectric materials. , 2008, Nature materials.

[53]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[54]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[55]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[56]  M. Kanatzidis,et al.  Helical Polymer 1/∞[P2Se62-]: Strong Second Harmonic Generation Response and Phase-Change Properties of Its K and Rb Salts , 2007 .

[57]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[58]  Z. Gu,et al.  Direct imaging of the alkali metal site in K-doped fullerene peapods. , 2005, Physical review letters.

[59]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[60]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[61]  M. Baenitz,et al.  Structural, transport, magnetic, and thermal properties of Eu8Ga16Ge30 , 2001 .

[62]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[63]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[64]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[65]  Pennycook,et al.  High-resolution incoherent imaging of crystals. , 1990, Physical review letters.

[66]  F. Lotgering,et al.  Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I , 1959 .