One-Handed Wearable sEMG Sensor for Myoelectric Control of Prosthetic Hands

A novel sEMG (surface electromyography) sensor using polypyrrole-coated nonwoven fabric sheet as electrodes (PPy-electrode) is proposed for the disabled to control prosthetic limbs in daily life. The PPy-electrodes are sewed on an elastic band to guarantee closely contact to the skin thus to enable stable sEMG measurement with high signal-to-noise ratio. Furthermore, the sensor is highly customizable to fit for the size and the shape of the stump so that the disabled can wear the sensor by themselves. The performance of the proposed sensor is investigated by comparing with Ag/AgCl electrodes with electrolytic gel in an experiment to measure the sEMG from the same muscle fibers. The high correlation coefficient (0.87) between the sEMG measured by the two types of sensors suggests the effectiveness of the proposed sensor. The experiment to control myoelectric prosthetic hands showed that the disabled can use it with one hand to obtain sEMG signals for myoelectric control.