Pivot versus interior point methods: Pros and cons

Linear optimization (LO) is the fundamental problem of mathematical optimization. It admits an enormous number of applications in economics, engineering, science and many other fields. The three most significant classes of algorithms for solving LO problems are: pivot, ellipsoid and interior point methods. Because ellipsoid methods are not efficient in practice we will concentrate on the computationally successful simplex and primal-dual interior point methods only, and summarize the pros and cons of these algorithm classes.

[1]  J. L. Nazareth Computer solution of linear programs , 1987 .

[2]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[3]  Jacek Gondzio,et al.  Implementation of Interior Point Methods for Large Scale Linear Programming , 1996 .

[4]  Gautam Mitra,et al.  Simplex algorithms , 1996 .

[5]  E. Beale Cycling in the dual simplex algorithm , 1955 .

[6]  Tibor Illés,et al.  A new and constructive proof of two basic results of linear programming , 2001 .

[7]  H. M. Wagner The dual simplex algorithm for bounded variables , 1958 .

[8]  John A. Tomlin,et al.  Implementing the Simplex Method for the Optimization Subroutine Library , 1992, IBM Syst. J..

[9]  T. Terlaky A convergent criss-cross method , 1985 .

[10]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[11]  P. Wolfe A Technique for Resolving Degeneracy in Linear Programming , 1963 .

[12]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[13]  Hans Frenk,et al.  High performance optimization , 2000 .

[14]  James E. Ward,et al.  Approaches to sensitivity analysis in linear programming , 1991 .

[15]  Shuzhong Zhang,et al.  Pivot rules for linear programming: A survey on recent theoretical developments , 1993, Ann. Oper. Res..

[16]  Jiming Peng,et al.  A New Class of Polynomial Primal-dual Methods for Linear and Semideenite Optimization , 1999 .

[17]  Tamás Terlaky,et al.  An easy way to teach interior-point methods , 2001, Eur. J. Oper. Res..

[18]  Hans-Jakob Lüthi,et al.  The existence of a short sequence of admissible pivots to an optimal basis in LP and LCP , 1997 .

[19]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[20]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[21]  Tamás Koltai,et al.  The difference between the managerial and mathematical interpretation of sensitivity analysis results in linear programming , 2000 .

[22]  Robert E. Bixby,et al.  Progress in Linear Programming , 1993 .

[23]  李幼升,et al.  Ph , 1989 .

[24]  Katta G. Murty,et al.  Operations Research: Deterministic Optimization Models , 1994 .

[25]  Michael A. Saunders,et al.  A practical anti-cycling procedure for linearly constrained optimization , 1989, Math. Program..

[26]  G. Dantzig,et al.  Notes on Linear Programming: Part 1. The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints , 1954 .

[27]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[28]  John E. Beasley Advances in Linear and Integer Programming , 1996 .

[29]  Roy E. Marsten,et al.  Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..

[30]  A. J. Hoffman Cycling in the Simplex Algorithm , 2003 .

[31]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[32]  B. Jansen,et al.  Sensitivity analysis in linear programming: just be careful! , 1997 .

[33]  Elmer Earl. Branstetter,et al.  The theory of linear programming , 1963 .

[34]  A. Charnes Optimality and Degeneracy in Linear Programming , 1952 .

[35]  K. Fukuda,et al.  On the finiteness of the criss-cross method , 1991 .

[36]  Tam As Terlaky An Easy Way to Teach Interior Point Methods , 1998 .

[37]  András Prékopa,et al.  On the Development of Optimization Theory , 1980 .

[38]  Jiming Peng,et al.  Self-Regular Proximities and New Search Directions for Linear and Semidefinite Optimization , 2000 .

[39]  Jan Karel Lenstra,et al.  History of mathematical programming : a collection of personal reminiscences , 1991 .

[40]  Tamás Terlaky,et al.  Criss-cross methods: A fresh view on pivot algorithms , 1997, Math. Program..

[41]  C. E. Lemke,et al.  The dual method of solving the linear programming problem , 1954 .

[42]  Margaret H. Wright,et al.  The interior-point revolution in constrained optimization , 1998 .

[43]  James D. Currie The complexity of the simplex algorithm , 1984 .

[44]  Shuzhong Zhang,et al.  New variants of finite criss-cross pivot algorithms for linear programming , 1999, Eur. J. Oper. Res..

[45]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[46]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[47]  Donald Goldfarb,et al.  Steepest-edge simplex algorithms for linear programming , 1992, Math. Program..

[48]  T Talaky,et al.  Interior Point Methods of Mathematical Programming , 1997 .

[49]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[50]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[51]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.