REINVENT 2.0: An AI Tool for De Novo Drug Design

In the past few years, we have witnessed a renaissance of the field of molecular de novo drug design. The advancements in deep learning and artificial intelligence (AI) have triggered an avalanche of ideas on how to translate such techniques to a variety of domains including the field of drug design. A range of architectures have been devised to find the optimal way of generating chemical compounds by using either graph- or string (SMILES)-based representations. With this application note, we aim to offer the community a production-ready tool for de novo design, called REINVENT. It can be effectively applied on drug discovery projects that are striving to resolve either exploration or exploitation problems while navigating the chemical space. It can facilitate the idea generation process by bringing to the researcher's attention the most promising compounds. REINVENT's code is publicly available at https://github.com/MolecularAI/Reinvent.

[1]  H. L. Morgan The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. , 1965 .

[2]  R. Venkataraghavan,et al.  Atom pairs as molecular features in structure-activity studies: definition and applications , 1985, J. Chem. Inf. Comput. Sci..

[3]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[4]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[5]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[6]  Mark Johnson,et al.  Algorithm for Naming Molecular Equivalence Classes Represented by Labeled Pseudographs , 2001, J. Chem. Inf. Comput. Sci..

[7]  James G. Nourse,et al.  Reoptimization of MDL Keys for Use in Drug Discovery , 2002, J. Chem. Inf. Comput. Sci..

[8]  Long Ji Lin,et al.  Self-improving reactive agents based on reinforcement learning, planning and teaching , 1992, Machine Learning.

[9]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[10]  Peter Gedeck,et al.  QSAR - How Good Is It in Practice? Comparison of Descriptor Sets on an Unbiased Cross Section of Corporate Data Sets , 2006, J. Chem. Inf. Model..

[11]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[12]  P. Verhoest,et al.  Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. , 2010, ACS chemical neuroscience.

[13]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[14]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[15]  D. Cummins,et al.  Integrating Everything: The Molecule Selection Toolkit, a System for Compound Prioritization in Drug Discovery. , 2016, Journal of medicinal chemistry.

[16]  Tom Schaul,et al.  Prioritized Experience Replay , 2015, ICLR.

[17]  Nando de Freitas,et al.  Sample Efficient Actor-Critic with Experience Replay , 2016, ICLR.

[18]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[19]  Thomas Blaschke,et al.  Molecular de-novo design through deep reinforcement learning , 2017, Journal of Cheminformatics.

[20]  Thomas Blaschke,et al.  Application of Generative Autoencoder in De Novo Molecular Design , 2017, Molecular informatics.

[21]  Yibo Li,et al.  Multi-objective de novo drug design with conditional graph generative model , 2018, Journal of Cheminformatics.

[22]  Thierry Kogej,et al.  Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks , 2017, ACS central science.

[23]  Olexandr Isayev,et al.  Deep reinforcement learning for de novo drug design , 2017, Science Advances.

[24]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[25]  Gisbert Schneider,et al.  De Novo Design of Bioactive Small Molecules by Artificial Intelligence , 2018, Molecular informatics.

[26]  Risto Miikkulainen,et al.  The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities , 2018, Artificial Life.

[27]  Gerard J. P. van Westen,et al.  An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor , 2018, Journal of Cheminformatics.

[28]  Djork-Arné Clevert,et al.  Efficient multi-objective molecular optimization in a continuous latent space , 2019, Chemical science.

[29]  Thomas Blaschke,et al.  Exploring the GDB-13 chemical space using deep generative models , 2018, Journal of Cheminformatics.

[30]  Marwin H. S. Segler,et al.  GuacaMol: Benchmarking Models for De Novo Molecular Design , 2018, J. Chem. Inf. Model..

[31]  Ola Engkvist,et al.  Randomized SMILES strings improve the quality of molecular generative models , 2019, Journal of Cheminformatics.

[32]  Ola Engkvist,et al.  A de novo molecular generation method using latent vector based generative adversarial network , 2019, J. Cheminformatics.

[33]  Dragos Horvath,et al.  De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping , 2019, J. Chem. Inf. Model..

[34]  Gianni De Fabritiis,et al.  Shape-Based Generative Modeling for de Novo Drug Design , 2019, J. Chem. Inf. Model..

[35]  Alán Aspuru-Guzik,et al.  Deep learning enables rapid identification of potent DDR1 kinase inhibitors , 2019, Nature Biotechnology.

[36]  O. Engkvist,et al.  Direct Steering of de novo Molecular Generation using Descriptor Conditional Recurrent Neural Networks (cRNNs) , 2019 .

[37]  Francesca Grisoni,et al.  Bidirectional Molecule Generation with Recurrent Neural Networks , 2020, J. Chem. Inf. Model..

[38]  S. Hochreiter,et al.  On Failure Modes of Molecule Generators and Optimizers , 2020 .

[39]  S. Hochreiter,et al.  On Failure Modes of Molecule Generators and Optimizers , 2020 .

[40]  C. Grebner,et al.  Automated De-Novo Design in Medicinal Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn? , 2020, Journal of medicinal chemistry.

[41]  Djork-Arné Clevert,et al.  De novo generation of hit-like molecules from gene expression signatures using artificial intelligence , 2020, Nature Communications.

[42]  Ola Engkvist,et al.  SMILES-based deep generative scaffold decorator for de-novo drug design , 2020, Journal of Cheminformatics.

[43]  Thomas Blaschke,et al.  Memory-assisted reinforcement learning for diverse molecular de novo design , 2020, Journal of Cheminformatics.

[44]  Francesca Grisoni,et al.  Generative molecular design in low data regimes , 2020, Nature Machine Intelligence.