Construction automatique d'ontologies à partir de spécifications de bases de données

Apparatus and method are disclosed for identifying and measuring random contact interruption events in a circuit interconnection device. A comparator circuit, adapted to be operated at high frequencies, identifies when an interrupt event has occurred. The comparator circuit, as a result of the interruption event, causes a high frequency counter circuit to count clock pulses. The count in the counter circuit is continuously applied to an RAM memory circuit, write-enabled at an addressed memory location. After the interruption event is terminated, the RAM memory circuit is no longer write enabled at the addressed location and the addressed location is changed (incremented) in preparation for the next event. The counter circuit is also reset to zero in preparation for the next interruption event. The number of counts from a clock unit having a known frequency provides the duration of the interruption event. With the use of a clock unit operated at 100 MHz, interrupt events from 10 nanoseconds to 9.99 microseconds can be identified. Because of the frequency at which the testing is performed, the input impedance of the comparator circuit must be matched to the impedance of the circuit interconnection device.

[1]  Nicholas Asher,et al.  La SDRT: une approche de la cohérence du discours dans la tradition de la sémantique dynamique , 2001 .

[2]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[3]  Nathalie Aussenac-Gilles,et al.  Les relations sémantiques: du linguistique au formel , 2000 .

[4]  Philipp Cimiano,et al.  Ontology Learning from Text: Methods, Evaluation and Applications , 2005 .

[5]  Nathalie Aussenac-Gilles,et al.  The TERMINAE Method and Platform for Ontology Engineering from Texts , 2008, Ontology Learning and Population.

[6]  Daniel P. Miranker,et al.  Translating SQL Applications to the Semantic Web , 2008, DEXA.

[7]  Ludovic Tanguy,et al.  Repérage automatique de structures linguistiques en corpus : le cas des énoncés définitoires , 2000 .

[8]  Steffen Staab,et al.  Ontology Learning for the Semantic Web , 2002, IEEE Intell. Syst..

[9]  Gregory Grefenstette,et al.  Explorations in automatic thesaurus discovery , 1994 .

[10]  Didier Bourigault,et al.  UPERY : un outil d’analyse distributionnelle étendue pour la construction d’ontologies à partir de corpus , 2002, JEPTALNRECITAL.

[11]  Georges Gardarin,et al.  B2B Automatic Taxonomy Construction , 2008, ICEIS.

[12]  Caroline Barrière,et al.  Pattern-based approaches to semantic relation extraction: A state-of-the-art , 2008 .

[13]  Jacques Virbel,et al.  Le modèle d'architecture textuelle : fondements et expérimentation , 2001 .

[14]  Eva Klien,et al.  Using Term-Matching Algorithms for the Annotation of Geo-services , 2009, Knowledge Discovery Enhanced with Semantic and Social Information.

[15]  Christophe Luc Une typologie des énumérations basée sur les structures rhétoriques et architecturales du texte , 2001, JEPTALNRECITAL.

[16]  Claudio Giuliano,et al.  Exploiting Shallow Linguistic Information for Relation Extraction from Biomedical Literature , 2006, EACL.

[17]  Michel Charolles,et al.  L'encadrement du discours , 1997 .

[18]  Donald Hindle,et al.  Noun Classification From Predicate-Argument Structures , 1990, ACL.