Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests

The growing demand for bioenergy feedstock from forest harvest residues is generating concerns about the potential loss of site productivity through nutrient removal. We used tree-level national biomass equations and a national database of forest plots to develop stand-level biomass equations for the different tree components of 30 major forest tree species found in Canada using basal area as the independent variable. We have also compiled more than 12 800 nutrient concentration values for different components of Canadian tree species from existing databases and the literature. Uncertainties were propagated across biomass equations and through conversion of nutrient concentrations to nutrient contents. Most of the uncertainty in nutrient contents estimates was found to be among the nutrient concentration measurements. The greatest levels of uncertainty were for estimates of phosphorus in woody components and of calcium in foliage. Grouping species into genera gave only a minor loss of precision. The coupling of biomass equations and nutrient concentration data can be used to provide first-order estimates of biomass and nutrients exported by tree component and species when harvesting any commercial stand in Canada. However, the associated uncertainties are important enough to warrant their inclusion in decision making. Resume : La demande croissante pour les residus de coupe ades fins de bioenergie genere des preoccupations de perte de productivite suite al'exportation d'elements nutritifs. Nous avons developpe des equations allometriques de biomasse al'echelle du peuplement pour 30 especes d'arbre dominantes de la foret canadienne utilisant la surface terriere comme variable indepen- dante, apartir d'equations nationales de biomasse al'echelle de l'arbre et de l'information provenant d'un inventaire national de parcelles forestieres. Nous avons aussi compile plus de 12 800 valeurs de concentrations de nutriments pour diverses com- posantes d'arbre et d'especes qui provenaient de bases de donnees existantes et de la litterature. L'incertitude a ete propagee dans les equations allometriques et au travers de la transformation des concentrations de nutriments en contenus. La plupart des incertitudes se retrouvent au niveau des mesures de concentrations de nutriments. Ce sont les estimes du phosphore dans les compartiments ligneux ainsi que ceux du calcium dans le feuillage qui sont les plus incertains. Le regroupement des especes par genre n'a genere qu'une faible perte de precision. Le couplage des equations de biomasse et des mesures de concentrations en nutriments permet d'estimer les quantites de biomasse et de nutriments par composante d'arbre et par espece exportees des peuplements commerciaux lors de leur recolte. Cependant, l'incertitude sur ces estimes est suffisamment importante pour necessiter sa prise en compte pour les prises de decision.

[1]  J. Bauhus,et al.  Forest restoration with Betula ssp. and Populus ssp. nurse crops increases productivity and soil fertility , 2015 .

[2]  T. Jones,et al.  Operational biomass recovery of small trees: equations for six central Ontario tree species , 2015 .

[3]  L. Saint-Andre,et al.  Modelling of nutrient concentrations in roundwood based on diameter and tissue proportion: Evidence for an additional site-age effect in the case of Fagus sylvatica , 2014 .

[4]  N. Fenton,et al.  Effects of topography and thickness of organic layer on productivity of black spruce boreal forests of the Canadian Clay Belt region , 2014 .

[5]  Paul D. Pickell,et al.  Monitoring Forest Change in Landscapes Under-Going Rapid Energy Development: Challenges and New Perspectives , 2014 .

[6]  R. Yanai,et al.  Quantifying Uncertainty in Forest Nutrient Budgets , 2012 .

[7]  D. YanaiRuth,et al.  Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest , 2012 .

[8]  H. Laudon,et al.  Uncertainty in silicate mineral weathering rate estimates: source partitioning and policy implications , 2012 .

[9]  U. Diéguez-Aranda,et al.  Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain , 2012, Annals of Forest Science.

[10]  J. Peñuelas,et al.  Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain) , 2011 .

[11]  R. Man,et al.  Variation in leaf nitrogen and phosphorus stoichiometry in Picea abies across Europe: An analysis based on local observations , 2011 .

[12]  Richard J. Harper,et al.  Additive prediction of aboveground biomass for Pinus radiata (D. Don) plantations , 2010 .

[13]  E. Rastetter,et al.  Estimating Uncertainty in Ecosystem Budget Calculations , 2010, Ecosystems.

[14]  D. Cormier,et al.  Assessing forest biomass for bioenergy: Operational challenges and cost considerations , 2010 .

[15]  X. Guo,et al.  Canadian national biomass equations: new parameter estimates that include British Columbia data , 2008 .

[16]  P. Arp,et al.  Sulphate, Nitrogen and Base Cation Budgets at 21 Forested Catchments in Canada, the United States and Europe , 2005, Environmental monitoring and assessment.

[17]  F. Raulier,et al.  Canadian national tree aboveground biomass equations , 2005 .

[18]  Daniel Kurz,et al.  Scaling and Mapping Regional Calculations of Soil Chemical Weathering Rates in Sweden , 2004 .

[19]  D. Paré,et al.  Assessing the geochemical balance of managed boreal forests , 2002 .

[20]  G. Likens,et al.  Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems , 2002, Nature.

[21]  Q. Ponette,et al.  Relationships between forest tree species, stand production and stand nutrient amount , 2000 .

[22]  Jacques Ranger,et al.  Input–output nutrient budgets as a diagnostic tool for sustainable forest management , 1999 .

[23]  Xiwei Yin,et al.  Variation in foliar nitrogen concentration by forest type and climatic gradients in North America , 1993 .

[24]  K. T. Osman,et al.  Forest Soils , 2013, Springer International Publishing.

[25]  H. Laudon,et al.  Silicate mineral weathering rate estimates : Are they precise enough to be useful when predicting the recovery of nutrient pools after harvesting? , 2011 .

[26]  N. Clarke,et al.  Effects Of Very Intensive Forest Biomass Harvesting On Short And Long Term Site Productivity , 2008 .

[27]  E. Miller,et al.  Tree chemistry database (version 1.0) , 2005 .

[28]  C. Messier,et al.  Development of an improved model estimating the nutrient content of the bole for four boreal tree species , 1998 .

[29]  J. Lee The Calcicole—Calcifuge Problem Revisited , 1998 .

[30]  M. Ker Tree biomass equations for ten major species in Cumberland County, Nova Scotia , 1980 .