The structure of perpendicular bow shocks

A hybrid simulation model with kinetic ions, massless fluid electrons, and phenomenological resistivity is used to study the perpendicular configuration of the bow shocks of the earth and other planets. We investigate a wide range of parameters, including the upstream Mach number, electron and ion beta (ratios of thermal to magnetic pressure), and resistivity. Electron beta and resistivity are found to have little effect on the overall shock structure. Quasi-stationary structures are obtained at moderately high ion beta (βi ∼ 1), whereas the shock becomes more dynamic in the low ion beta, large Mach number regime (βi ∼ 0.1, MA > 8). The simulation results are shown to be in good agreement with a number of observational features of quasi-perpendicular bow shocks, including the morphology of the reflected ion stream, the magnetic field profile throughout the shock, and the Mach number dependence of the magnetic field overshoot.

[1]  P. Auer,et al.  THERMALIZATION IN THE EARTH'S BOW SHOCK. , 1971 .

[2]  Derek A. Tidman,et al.  Shock waves in collisionless plasmas , 1971 .

[3]  V. Eselevich,et al.  ISOMAGNETIC DISCONTINUITY IN A COLLISONLESS SHOCK WAVE. , 1971 .

[4]  C. Russell,et al.  A macroscopic profile of the typical quasi-perpendicular bow shock - Isee 1 and 2 , 1980 .

[5]  E. Greenstadt Structure of the terrestrial bow shock , 1974 .

[6]  R. Mason Ion and Electron Pressure Effects on Magnetosonic Shock Formation , 1972 .

[7]  K. Papadopoulos,et al.  High Mach Number Turbulent Magnetosonic Shocks. , 1971 .

[8]  C. Russell,et al.  Collisionless shock waves in space: A very high β structure , 1975 .

[9]  C. Wu Physical mechanisms for turbulent dissipation in collisionless shock waves , 1982 .

[10]  D. Biskamp Collisionless shock waves in plasmas , 1973 .

[11]  Charles C. Goodrich,et al.  Simulation of a perpendicular bow shock , 1981 .

[12]  L. S. Holmes,et al.  Measurement of Electron Temperatures produced by Collisionless Shock Waves in a Magnetized Plasma , 1967, Nature.

[13]  D. Morse A model for ion thermalization in the Earth's bow shock , 1976 .

[14]  R. A. Cairns,et al.  Ion dynamics in a perpendicular collisionless shock , 1973, Journal of Plasma Physics.

[15]  M. Keilhacker,et al.  Observation of collisionless plasma heating by strong shock waves , 1969 .

[16]  V. Formisano,et al.  The structure of the earth’s bow shock , 1973 .

[17]  J. Ogden,et al.  Electromagnetic ion cyclotron instability driven by ion energy anisotropy in high‐beta plasmas , 1975 .

[18]  A. E. Robson,et al.  Influence of Reflected Ions on the Magnetic Structure of a Collisionless Shock Front , 1972 .

[19]  R. Chodura A hybrid fluid-particle model of ion heating in high-Mach-number shock waves , 1975 .

[20]  H. Rosenbauer,et al.  High temporal resolution observations of electron heating at the bow shock , 1979 .

[21]  C. Nielson,et al.  Plasma rotation during implosion in a θ pinch , 1977 .

[22]  J. Freidberg,et al.  THEORY OF LAMINAR COLLISIONLESS SHOCKS. , 1971 .

[23]  V. Formisano THE PHYSICS OF THE EARTH'S COLLISIONLESS SHOCK WAVE , 1977 .

[24]  E. Greenstadt,et al.  Initial ISEE magnetometer results: Shock observation , 1979 .

[25]  V. Formisano,et al.  Solar wind interaction with the Earth's magnetic field: 1. Magnetosheath , 1973 .

[26]  P. Auer,et al.  Collision Free Shock Formation in Finite Temperature Plasmas , 1971 .

[27]  J. Asbridge,et al.  Vela 4 plasma observations near the Earth’s bow shock , 1970 .

[28]  N. A. Krall,et al.  Anomalous transport in high-temperature plasmas with applications to solenoidal fusion systems , 1977 .

[29]  D. Biskamp,et al.  Numerical studies of magnetosonic collisionless shock waves , 1972 .

[30]  C. W. Nielson,et al.  Hybrid model studies of ion dynamics and magnetic field diffusion during pinch implosions , 1976 .

[31]  N. A. Krall,et al.  Effect of turbulence on theta pinch modeling by hybrid numerical models , 1977 .

[32]  V. Formisano,et al.  On the structure of the turbulent bow shock , 1973 .

[33]  V. Eselevich Bow shock structure from laboratory and satellite experimental results , 1983 .

[34]  H. Hurwitz,et al.  Large‐Amplitude Magnetic Compression of a Collision‐Free Plasma. II. Development of a Thermalized Plasma , 1962 .

[35]  C. Russell,et al.  Structure of the quasi-perpendicular laminar bow shock. [earth-solar wind interaction , 1975 .

[36]  C. Russell,et al.  Current‐driven plasma instabilities at high latitudes , 1975 .