Analysis of the Angular Dependence of Time Delay in Gravitational Lensing
暂无分享,去创建一个
Chiara Righi | Nicola Alchera | Marco Bonici | Nicola Maggiore | Roberta Cardinale | Alba Domi | Silvano Tosi | S. Tosi | R. Cardinale | A. Domi | C. Righi | N. Maggiore | M. Bonici | Nicola Alchera
[1] J. Solà,et al. The H 0 tension in light of vacuum dynamics in the universe , 2017, 1705.06723.
[2] G. Lewis,et al. Weighing a galaxy bar in the lens Q2237+=0305 , 1997, astro-ph/9708170.
[3] Jennie Traschen,et al. Spacetime and Geometry: An Introduction to General Relativity , 2005 .
[4] C. Rusu,et al. The stellar and dark matter distributions in elliptical galaxies from the ensemble of strong gravitational lenses , 2013, 1309.5408.
[5] Nicola Alchera,et al. Towards a New Proposal for the Time Delay in Gravitational Lensing , 2017, Symmetry.
[6] P. Murdin. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .
[7] G. Meylan,et al. H0LiCOW – I. H0 Lenses in COSMOGRAIL's wellspring: program overview , 2016, 1607.00017.
[8] E. Hivon,et al. Reducing the H0 and σ8 tensions with dark matter-neutrino interactions. , 2017, 1710.02559.
[9] P. Marshall,et al. H0LiCOW - III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts★ , 2016, 1607.01047.
[10] G. Meylan,et al. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435-1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model , 2016, 1607.01790.
[11] A. Melchiorri,et al. Vacuum phase transition solves the H 0 tension , 2017, 1710.02153.
[12] S. Refsdal. On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .
[13] G. Meylan,et al. H0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223 , 2016, 1607.00382.
[14] J. P. Huchra,et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.
[15] A. Melchiorri,et al. Constraining dark energy dynamics in extended parameter space , 2017, 1704.00762.
[16] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[17] A. Sandage,et al. Steps toward the Hubble constant. VII. Distances to NGC 2403, M101, and the Virgo cluster using 21 centimeter line widths compared with optical methods: The global value of H/sub 0/ , 1976 .
[18] G. Vaucouleurs,et al. Hubble ratio and solar motion from 200 spiral galaxies having distances derived from the luminosity index , 1981 .
[19] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[20] F. Courbin,et al. H0LiCOW - IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology , 2016, 1607.01403.
[21] S. Suyu. Cosmography from two-image lens systems: overcoming the lens profile slope degeneracy , 2012, 1202.0287.
[22] N. Vittorio,et al. Is there a concordance value for $H_0$? , 2016, 1607.05677.
[23] A. Einstein. Cosmological Considerations in the General Theory of Relativity , 1917 .
[24] A. Banerjee,et al. Deflection of light by black holes and massless wormholes in massive gravity , 2017, 1712.10175.
[25] Sean M. Carroll,et al. Spacetime and Geometry: An Introduction to General Relativity , 2003 .
[26] Celine Boehm,et al. Constraining dark matter-neutrino interactions using the CMB and large-scale structure , 2014, 1401.7597.
[27] K. Nordtvedt. The fourth test of general relativity , 1982 .
[28] C. Keeton,et al. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities , 2007, 0710.2333.
[29] E. Hubble. A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY AMONG EXTRA-GALACTIC NEBULAE. , 1929, Proceedings of the National Academy of Sciences of the United States of America.