Transfinite Extension of the Mu-Calculus

In [1] Bradfield found a link between finite differences formed by Σ$^{\rm 0}_{\rm 2}$ sets and the mu-arithmetic introduced by Lubarski [7]. We extend this approach into the transfinite: in allowing countable disjunctions we show that this kind of extended mu-calculus matches neatly to the transfinite difference hierarchy of Σ$^{\rm 0}_{\rm 2}$ sets. The difference hierarchy is intimately related to parity games. When passing to infinitely many priorities, it might not longer be true that there is a positional winning strategy. However, if such games are derived from the difference hierarchy, this property still holds true.

[1]  A. Louveau,et al.  Some results in the wadge hierarchy of borel sets , 1983 .

[2]  N. Klarlund Progress Measures and Finite Arguments for Infinite Computations , 1990 .

[3]  Yiannis N. Moschovakis,et al.  Cabal Seminar 79–81 , 1983 .

[4]  Jacques Duparc,et al.  Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.

[5]  Robert S. Lubarsky μ-definable sets of integers , 1993, Journal of Symbolic Logic.

[6]  Julian C. Bradfield Fixpoints, games and the difference hierarchy , 2003, RAIRO Theor. Informatics Appl..

[7]  Victor L. Selivanov Wadge Degrees of [omega]-Languages of Deterministic Turing Machines , 2003, RAIRO Theor. Informatics Appl..

[8]  Colin Stirling,et al.  Modal Logics and mu-Calculi: An Introduction , 2001, Handbook of Process Algebra.

[9]  Kazuyuki Tanaka,et al.  Δ03-determinacy, comprehension and induction , 2007, J. Symb. Log..

[10]  Damian Niwinski,et al.  Fixed Point Characterization of Infinite Behavior of Finite-State Systems , 1997, Theor. Comput. Sci..

[11]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[12]  Igor Walukiewicz,et al.  Positional Determinacy of Games with Infinitely Many Priorities , 2006, Log. Methods Comput. Sci..

[13]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[14]  Rana Barua The Hausdorff-Kuratowski Hierarchy of omega-Regular Languages and a Hierarchy of Muller Automata , 1992, Theor. Comput. Sci..

[15]  Victor L. Selivanov,et al.  Wadge degrees of ω-languages of deterministic Turing machines , 2003 .