Minimally deformed charged anisotropic spherical solution
暂无分享,去创建一个
[1] R. Casadio,et al. Gravitational decoupling for axially symmetric systems and rotating black holes , 2021, Physical Review D.
[2] S. Ray,et al. Decoupling gravitational sources in f(R,T) gravity under class I spacetime , 2020 .
[3] M. K. Jasim,et al. An EGD model in the background of embedding class I space–time , 2020, The European Physical Journal C.
[4] A. Sotomayor,et al. Hairy black holes by gravitational decoupling , 2020, Physics of the Dark Universe.
[5] M. Sharif,et al. Extended gravitational decoupled solutions in self-interacting Brans–Dicke theory , 2020, 2006.04578.
[6] M. Sharif,et al. Extended gravitational decoupled charged anisotropic solutions , 2020 .
[7] P. Bargueño,et al. Anisotropic 2+1 dimensional black holes by gravitational decoupling , 2020, The European Physical Journal C.
[8] S. K. Maurya,et al. Extended gravitational decoupling (GD) solution for charged compact star model , 2020, The European Physical Journal C.
[9] S. K. Maurya,et al. Non-singular solution for anisotropic model by gravitational decoupling in the framework of complete geometric deformation (CGD) , 2020, The European Physical Journal C.
[10] F. Tello‐Ortiz. Minimally deformed anisotropic dark stars in the framework of gravitational decoupling , 2020, The European Physical Journal C.
[11] S. Maurya,et al. Class I approach as MGD generator , 2020, The European Physical Journal C.
[12] E. Contreras,et al. Extra packing of mass of anisotropic interiors induced by MGD , 2020, 2003.00256.
[13] Roldao da Rocha,et al. MGD Dirac Stars , 2020, Symmetry.
[14] B. Dayanandan,et al. Embedding class I spherically symmetric charged compact star model , 2020, Astrophysics and Space Science.
[15] E. Contreras,et al. Regularity condition on the anisotropy induced by gravitational decoupling in the framework of MGD , 2020, The European Physical Journal C.
[16] R. Casadio,et al. Beyond Einstein Gravity: The Minimal Geometric Deformation Approach in the Brane-World , 2020 .
[17] F. X. L. Cedeño,et al. Gravitational decoupling in cosmology , 2019, Physics of the Dark Universe.
[18] M. Estrada. Erratum to: A way of decoupling gravitational sources in pure Lovelock gravity , 2019, The European Physical Journal C.
[19] R. Casadio,et al. A Generalization of the Minimal Geometric Deformation , 2020 .
[20] R. Casadio,et al. Beyond Einstein Gravity , 2020, SpringerBriefs in Physics.
[21] S. K. Maurya,et al. Charged anisotropic compact star in f(R,T) gravity: A minimal geometric deformation gravitational decoupling approach , 2020 .
[22] S. K. Maurya,et al. A completely deformed anisotropic class one solution for charged compact star: a gravitational decoupling approach , 2019, The European Physical Journal C.
[23] M. K. Jasim,et al. Minimally deformed anisotropic model of class one space-time by gravitational decoupling , 2019, The European Physical Journal C.
[24] A. Sotomayor,et al. Isotropization and change of complexity by gravitational decoupling , 2019, The European Physical Journal C.
[25] Á. Rincón,et al. Minimal geometric deformation in a Reissner–Nordström background , 2019, The European Physical Journal C.
[26] E. Contreras,et al. Anisotropic neutron stars by gravitational decoupling , 2019, The European Physical Journal C.
[27] S. Maurya,et al. Decoupling gravitational sources by MGD approach in Rastall gravity , 2019, Physics of the Dark Universe.
[28] A. Sotomayor,et al. Braneworld Gravity under gravitational Decoupling , 2019, Fortschritte der Physik.
[29] Z. Stuchlík,et al. Anisotropic Tolman VII solution by gravitational decoupling , 2019, The European Physical Journal C.
[30] Z. Stuchl'ik,et al. Anisotropic ultracompact Schwarzschild star by gravitational decoupling , 2019, Classical and Quantum Gravity.
[31] A. Sotomayor,et al. A causal Schwarzschild-de Sitter interior solution by gravitational decoupling , 2019, The European Physical Journal C.
[32] C. Las Heras,et al. New algorithms to obtain analytical solutions of Einstein’s equations in isotropic coordinates , 2019, The European Physical Journal C.
[33] S. Ray,et al. Study of charged compact stars with class 1 metric under general relativity , 2019 .
[34] P. Bargueño,et al. Extended gravitational decoupling in 2 + 1 dimensional space-times , 2019, Classical and Quantum Gravity.
[35] P. Bargueño,et al. A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach , 2019, The European Physical Journal C.
[36] R. da Rocha,et al. Extended quantum portrait of MGD black holes and information entropy , 2019, Physics Letters B.
[37] E. Contreras. Gravitational decoupling in 2 + 1 dimensional space-times with cosmological term , 2019, Classical and Quantum Gravity.
[38] S. K. Maurya,et al. Generalized relativistic anisotropic compact star models by gravitational decoupling , 2019, The European Physical Journal C.
[39] S. K. Maurya,et al. Charged anisotropic strange stars in general relativity , 2019, The European Physical Journal C.
[40] J. Ovalle. Decoupling gravitational sources in general relativity: The extended case , 2018, Physics Letters B.
[41] R. Prado,et al. The gravitational decoupling method: the higher-dimensional case to find new analytic solutions , 2018, The European Physical Journal Plus.
[42] A. Banerjee,et al. Relativistic charged spheres: compact stars, compactness and stable configurations , 2018, Journal of Cosmology and Astroparticle Physics.
[43] A. Sotomayor,et al. Einstein-Klein-Gordon system by gravitational decoupling , 2018, EPL (Europhysics Letters).
[44] M. Sharif,et al. Gravitational decoupled anisotropic solutions in $$f({\mathcal {G}})$$f(G) gravity , 2018, The European Physical Journal C.
[45] A. Sotomayor,et al. A simple method to generate exact physically acceptable anisotropic solutions in general relativity , 2018, The European Physical Journal Plus.
[46] P. Bargueño,et al. Minimal geometric deformation in asymptotically (A-)dS space-times and the isotropic sector for a polytropic black hole , 2018, The European Physical Journal C.
[47] P. Nicolini,et al. Generalised uncertainty principle Hawking fermions from minimally geometric deformed black holes , 2018, Classical and Quantum Gravity.
[48] F. Tello‐Ortiz,et al. Compact anisotropic models in general relativity by gravitational decoupling , 2018, The European Physical Journal C.
[49] E. Contreras. Minimal Geometric Deformation: the inverse problem , 2018, The European Physical Journal C.
[50] M. Sharif,et al. Gravitational decoupled anisotropic solutions for cylindrical geometry , 2018, The European Physical Journal Plus.
[51] P. Bargueño,et al. Minimal geometric deformation decoupling in $$2+1$$2+1 dimensional space–times , 2018, The European Physical Journal C.
[52] F. Tello‐Ortiz,et al. Charged anisotropic compact objects by gravitational decoupling , 2018, The European Physical Journal C.
[53] M. Sharif,et al. Gravitational decoupled charged anisotropic spherical solutions , 2018, 1804.09616.
[54] P. León,et al. Using MGD Gravitational Decoupling to Extend the Isotropic Solutions of Einstein Equations to the Anisotropical Domain , 2018, Fortschritte der Physik.
[55] A. Sotomayor,et al. Black holes by gravitational decoupling , 2018, The European Physical Journal C.
[56] R. Rocha,et al. The extended minimal geometric deformation of SU(N) dark glueball condensates , 2018, The European Physical Journal C.
[57] F. Tello‐Ortiz,et al. A new family of analytical anisotropic solutions by gravitational decoupling , 2018, The European Physical Journal Plus.
[58] Á. Rincón,et al. Gravitational decoupled anisotropies in compact stars , 2018, 1802.08000.
[59] R. Rocha,et al. Gregory–Laflamme analysis of MGD black strings , 2017, 1708.08686.
[60] P. Channuie,et al. Relativistic compact stars with charged anisotropic matter , 2017, 1711.03412.
[61] Á. Rincón,et al. Stability of cosmic structures in scalar–tensor theories of gravity , 2017, 1710.02485.
[62] A. Sotomayor,et al. Anisotropic solutions by gravitational decoupling , 2017, 1708.00407.
[63] J. Ovalle. Decoupling gravitational sources in general relativity: from perfect to anisotropic fluids , 2017, 1704.05899.
[64] R. Rocha. Black hole acoustics in the minimal geometric deformation of a de Laval nozzle , 2017, 1703.01528.
[65] R. Rocha. Dark SU(N) glueball stars on fluid branes , 2017, 1701.00761.
[66] A. Sotomayor,et al. The Minimal Geometric Deformation Approach: A Brief Introduction , 2016, 1612.07926.
[67] M. Malheiro,et al. Equilibrium and stability of charged strange quark stars , 2015, 1509.07692.
[68] R. Rocha,et al. The minimal geometric deformation approach extended , 2015, 1503.02873.
[69] R. Casadio,et al. Classical tests of general relativity: Brane-world Sun from minimal geometric deformation , 2015, 1503.02316.
[70] L. Gergely,et al. Brane-world stars with a solid crust and vacuum exterior , 2014, 1405.0252.
[71] M. Malaver. Some new models for strange quark stars with isotropic pressure , 2014, 1406.7347.
[72] L. Paulucci,et al. Strange quark matter fragmentation in astrophysical events , 2014, 1405.1777.
[73] R. Casadio,et al. Black strings from minimal geometric deformation in a variable tension brane-world , 2013, 1310.5853.
[74] F. Linares,et al. Tolman IV solution in the Randall-Sundrum Braneworld , 2013, 1311.1844.
[75] F. Linares,et al. The role of exterior Weyl fluids on compact stellar structures in Randall–Sundrum gravity , 2013, 1304.5995.
[76] R. Casadio,et al. Brane-world stars from minimal geometric deformation, and black holes , 2012, 1212.0409.
[77] Neeraj Pant,et al. Relativistic modeling of charged super-dense star with Einstein-Maxwell equations in general relativity , 2012, Appl. Math. Comput..
[78] R. Casadio,et al. Brane-world stars and (microscopic) black holes , 2012, 1201.6145.
[79] Y. K. Gupta,et al. Charged analogue of Vlasenko-Pronin superdense star in general relativity , 2011 .
[80] S. Ray,et al. Isotropic cases of static charged fluid spheres in general relativity , 2009, 0912.3598.
[81] M. Malheiro,et al. Electrically charged strange quark stars , 2009, 0907.5537.
[82] H. Andréasson. Sharp bounds on 2m/r of general spherically symmetric static objects , 2008 .
[83] L. Núñez,et al. Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects , 2007, 0706.3452.
[84] T. Harko,et al. Minimum mass–radius ratio for charged gravitational objects , 2007, gr-qc/0702078.
[85] A. L. Espindola,et al. Electrically charged compact stars and formation of charged black holes , 2003, astro-ph/0307262.
[86] B. Ivanov. Maximum bounds on the surface redshift of anisotropic stars , 2002 .
[87] B. Ivanov. Static charged perfect fluid spheres in general relativity , 2002 .
[88] S. Maharaj,et al. General Solution for a Class of Static Charged Spheres , 2001 .
[89] L. Herrera. Cracking of self-gravitating compact objects , 1992 .
[90] E. Liang,et al. Anisotropic spheres in general relativity , 1974 .
[91] W. Bonnor,et al. Exact Solutions for Oscillating Spheres in General Relativity , 1967 .
[92] W. Israel. Singular hypersurfaces and thin shells in general relativity , 1966 .
[93] H. Buchdahl. General Relativistic Fluid Spheres , 1959 .