Merging Photonic Wire Lasers and Nanoantennas

One of the main goals of photonic integration is to combine different components that are capable of executing different functions. One of these functions is the generation of light: in this sense, photonic wire lasers may become a key component in future generations of integrated circuits because of their small footprints. Another is the generation of high-intensity electric fields that can be used to excite nonlinear effects, such as surface-enhanced Raman scattering, or to visualize nano-objects, in small regions and can be achieved by using plasmonic nanoantennas. In this paper, the combination of photonic wire lasers and plasmonic nanoantennas is examined. We show that a very compact photonic wire nanoantenna laser, which generates a high-intensity electric field inside the nanoantenna, can be produced.

[1]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[2]  E. Haller,et al.  Ultra-low Threshold electrically pumped quantum dot photonic crystal nanocavity laser , 2011, CLEO 2011.

[3]  Malin Premaratne,et al.  Coupling of light from microdisk lasers into plasmonic nano-antennas. , 2009, Optics express.

[4]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[5]  Dirk Englund,et al.  Ultrafast photonic crystal lasers , 2008 .

[6]  H.T. Hattori,et al.  Large Square Resonator Laser With Quasi-Single-Mode Operation , 2009, IEEE Photonics Technology Letters.

[7]  H. Hattori Modal analysis of one-dimensional nonuniform arrays of square resonators , 2008 .

[8]  Thomas Søndergaard,et al.  Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons. , 2005, Optics express.

[9]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[10]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[11]  Dai Ohnishi,et al.  Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser. , 2004, Optics express.

[12]  Masayuki Fujita,et al.  Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics, and spontaneous emission factor , 1999 .

[13]  Sung-Bock Kim,et al.  Characteristics of electrically driven two-dimensional photonic crystal lasers , 2005 .

[14]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[15]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[16]  Marc Zussy,et al.  Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides. , 2005, Optics express.

[17]  Yong-Hee Lee,et al.  Characteristics of modified single-defect two-dimensional photonic crystal lasers , 2002 .

[18]  T. Baba,et al.  Photonic crystal /spl kappa/-vector superprism , 2004, Journal of Lightwave Technology.

[19]  Nanfang Yu,et al.  Plasmonic Quantum Cascade Laser Antenna , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[20]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[21]  M. Sorel,et al.  High Quality-Factor 1-D-Suspended Photonic Crystal/Photonic Wire Silicon Waveguide Micro-Cavities , 2009, IEEE Photonics Technology Letters.

[22]  Federico Capasso,et al.  Quantum cascade lasers with integrated plasmonic antenna-array collimators. , 2008, Optics express.

[23]  V. M. Schneider,et al.  Steady‐state analysis of a directional square lattice band‐edge photonic crystal lasers , 2005 .

[24]  M. Premaratne,et al.  Photonic crystal phase detector , 2008 .

[25]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[26]  Naoki Kobayashi,et al.  Triangular-Facet Lasers Coupled by a Rectangular Optical Waveguide , 1997 .

[27]  R. Dutton,et al.  Coupled optical and electronic simulations of electrically pumped photonic-crystal-based light-emitting diodes , 2005 .

[28]  T.M. Benson,et al.  Directional Emission, Increased Free Spectral Range, and Mode $Q$-Factors in 2-D Wavelength-Scale Optical Microcavity Structures , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Shanhui Fan,et al.  Elements for Plasmonic Nanocircuits with Three‐Dimensional Slot Waveguides , 2010, Advanced materials.

[30]  O. Painter,et al.  Two-dimensional photonic bandgap defect laser , 1999, 1999 Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems (Cat. No.99TH8455).

[31]  Yong-Hee Lee,et al.  Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers , 2002 .

[32]  Trevor M. Benson,et al.  Spectral shift and Q change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness , 2004 .

[33]  Masaya Notomi,et al.  20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. , 2011, Optics express.

[34]  A. F. J. Levi,et al.  Directional light coupling from microdisk lasers , 1993 .

[35]  V. M. Schneider,et al.  Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures. , 2005, Applied optics.

[36]  Ulf Peschel,et al.  Excitation of plasmonic gap waveguides by nanoantennas. , 2009, Optics express.