A fission fragment detector for correlated fission output studies

Abstract A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

[1]  F. Hambsch,et al.  Ambiguities in the grid-inefficiency correction for Frisch-Grid Ionization Chambers , 2012 .

[2]  C. K. Yuen,et al.  Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  K. Mork,et al.  Amplitudes for Delbrück scattering , 1992 .

[4]  H. Goutte,et al.  Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distributions in U 238 , 2005 .

[5]  C. D. Bowman,et al.  The Los Alamos National Laboratory Spallation Neutron Sources , 1990 .

[6]  P. Pani,et al.  GEMS: Underwater spectrometer for long-term radioactivity measurements , 2011 .

[7]  E. Falletti,et al.  Digital filters for noise reduction in nuclear detectors , 2009, 2009 16th IEEE-NPSS Real Time Conference.

[8]  D. Brown,et al.  Event-by-event evaluation of the prompt fission neutron spectrum from 239Pu(n,f) , 2011, 1105.4655.

[9]  D. Madland,et al.  Prompt fission neutron spectra and average prompt neutron multiplicities , 1982 .

[10]  Patrick Talou,et al.  Monte Carlo Hauser-Feshbach predictions of prompt fission γ rays: Application to n th + 235 U, n th + 239 Pu, and 252 Cf (sf) , 2013 .

[11]  S. Ritt,et al.  New components of the MIDAS data acquisition system , 1999, 1999 IEEE Conference on Real-Time Computer Applications in Nuclear Particle and Plasma Physics. 11th IEEE NPSS Real Time Conference. Conference Record (Cat. No.99EX295).

[12]  T. R. England,et al.  Evaluation and compilation of fission product yields 1993 , 1995 .

[13]  J. Berger,et al.  Microscopic analysis of collective dynamics in low energy fission , 1984 .

[14]  Valentin T. Jordanov,et al.  Digital techniques for real-time pulse shaping in radiation measurements , 1994 .

[15]  Tae-Hoon Lee,et al.  A fission ionization detector for neutron flux measurements at a spallation source , 1993 .

[16]  F. Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[17]  P. Möller,et al.  Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space , 2001, Nature.

[18]  Patrick Talou,et al.  Advanced Monte Carlo modeling of prompt fission neutrons for thermal and fast neutron-induced fission reactions on Pu 239 , 2011 .

[19]  Michal Mocko,et al.  Fourth-generation spallation neutron target-moderator-reflector-shield assembly at the Manuel Lujan Jr. neutron scattering center , 2013 .

[20]  J. Harvey,et al.  DESIGN OF GRID IONIZATION CHAMBERS , 1949 .

[21]  F. Hambsch,et al.  A twin ionization chamber for fission fragment detection , 1987 .