Multi‐level hp‐adaptivity for cohesive fracture modeling

Summary Discretization-induced oscillations in the load–displacement curve are a well-known problem for simulations of cohesive crack growth with finite elements. The problem results from an insufficient resolution of the complex stress state within the cohesive zone ahead of the crack tip. This work demonstrates that the hp-version of the finite element method is ideally suited to resolve this complex and localized solution characteristic with high accuracy and low computational effort. To this end, we formulate a local and hierarchic mesh refinement scheme that follows dynamically the propagating crack tip. In this way, the usually applied static a priori mesh refinement along the complete potential crack path is avoided, which significantly reduces the size of the numerical problem. Studying systematically the influence of h-refinement, p-refinement, and hp-refinement, we demonstrate why the suggested hp-formulation allows to capture accurately the complex stress state at the crack front preventing artificial snap-through and snap-back effects. This allows to decrease significantly the number of degrees of freedom and the simulation runtime. Furthermore, we show that by combining this idea with the finite cell method, the crack propagation within complex domains can be simulated efficiently without resolving the geometry by the mesh. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  Ernst Rank,et al.  Multiscale computations with a combination of the h- and p-versions of the finite-element method , 2003 .

[2]  W. Mitchell Adaptive refinement for arbitrary finite-element spaces with hierarchical bases , 1991 .

[3]  Ernst Rank,et al.  Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .

[4]  Jens Markus Melenk,et al.  Fully discrete hp-finite elements: fast quadrature , 2001 .

[5]  Ernst Rank,et al.  The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.

[6]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[7]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[8]  C. D. Mote Global‐local finite element , 1971 .

[9]  van Jaw Hans Dommelen,et al.  A three-dimensional self-adaptive cohesive zone model for interfacial delamination , 2011 .

[10]  P. Frauenfelder hp-Finite element methods on anisotropically, locally refined meshes in three dimensions with stochastic data , 2004 .

[11]  F. J. Gómez,et al.  Generalizations and specializations of cohesive crack models , 2003 .

[12]  Robert Michael Kirby,et al.  High-order spectral/hp element discretisation for reaction–diffusion problems on surfaces: Application to cardiac electrophysiology , 2014, J. Comput. Phys..

[13]  A. Needleman An analysis of tensile decohesion along an interface , 1990 .

[14]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[15]  S. Hosseini Numerical simulation of damage mechanisms in composite materials , 2014 .

[16]  Ivo Dolezel,et al.  Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM , 2008, Math. Comput. Simul..

[17]  V. Tomar,et al.  Bounds for element size in a variable stiffness cohesive finite element model , 2004 .

[18]  I. Doležel,et al.  Adaptive hp-FEM with Arbitrary-Level Hanging Nodes for Maxwell's Equations , 2010 .

[19]  Jacob Fish,et al.  Adaptive s-method for linear elastostatics , 1993 .

[20]  de R René Borst,et al.  Propagation of delamination in composite materials with isogeometric continuum shell elements , 2015 .

[21]  Joseph E. Flaherty,et al.  Adaptive local overlapping grid methods for parabolic systems in two space dimensions , 1992 .

[22]  Jacob Fish,et al.  On adaptive multilevel superposition of finite element meshes for linear elastostatics , 1994 .

[23]  Hung Nguyen-Xuan,et al.  High-order B-splines based finite elements for delamination analysis of laminated composites , 2013 .

[24]  J. Fish,et al.  Hierarchical modelling of discontinuous fields , 1992 .

[25]  D. Schillinger,et al.  Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes , 2015 .

[26]  M. Crisfield,et al.  Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues , 2001 .

[27]  Zohar Yosibash,et al.  Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation , 2011 .

[28]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[29]  R. Borst,et al.  COMPUTATIONAL ASPECTS OF COHESIVE – ZONE MODELS , 2004 .

[30]  Barna A. Szabó,et al.  Estimation and Control Error Based on P-Convergence, , 1984 .

[31]  Dominik Schillinger,et al.  The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis , 2012 .

[32]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[33]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[34]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[35]  Pavel Solin,et al.  An adaptive $$hp$$-DG method with dynamically-changing meshes for non-stationary compressible Euler equations , 2013, Computing.

[36]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[37]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[38]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[39]  Z. Pammer,et al.  The p–version of the finite–element method , 2014 .

[40]  Haim Waisman,et al.  Progressive delamination analysis of composite materials using XFEM and a discrete damage zone model , 2015 .

[41]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[42]  P. Wriggers,et al.  NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding , 2014 .

[43]  Cv Clemens Verhoosel,et al.  A dissipation‐based arc‐length method for robust simulation of brittle and ductile failure , 2009 .

[44]  van den Mj Marco Bosch,et al.  An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion , 2006 .

[45]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[46]  Vinh Phu Nguyen,et al.  Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis , 2014, Composites Part B: Engineering.

[47]  O. Sluis Process zone and cohesive element size in numerical simulations of delamination in bilayers , 2010 .

[48]  Ernst Rank,et al.  Smart octrees: Accurately integrating discontinuous functions in 3D , 2016 .

[49]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[50]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[51]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[52]  A. Needleman An analysis of decohesion along an imperfect interface , 1990 .

[53]  Pavel Solín,et al.  Adaptive higher-order finite element methods for transient PDE problems based on embedded higher-order implicit Runge-Kutta methods , 2012, J. Comput. Phys..

[54]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[55]  Martin Ruess,et al.  Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures , 2015 .

[56]  Thomas Weiland,et al.  Efficient large scale electromagnetic simulations using dynamically adapted meshes with the discontinuous Galerkin method , 2011, J. Comput. Appl. Math..

[57]  Ernst Rank,et al.  FCMLab: A finite cell research toolbox for MATLAB , 2014, Adv. Eng. Softw..

[58]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[59]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[60]  M. Ortiz,et al.  Three‐dimensional cohesive modeling of dynamic mixed‐mode fracture , 2001 .

[61]  Robert Michael Kirby,et al.  Nektar++: An open-source spectral/hp element framework , 2015, Comput. Phys. Commun..

[62]  E. Rank,et al.  High order finite elements for shells , 2005 .

[63]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[64]  M Mohammad Samimi,et al.  An enriched cohesive zone model for delamination in brittle interfaces , 2009 .

[65]  M. Ruess,et al.  A layerwise isogeometric approach for NURBS-derived laminate composite shells , 2015 .

[66]  Glaucio H. Paulino,et al.  Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture , 2012 .

[67]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[68]  de R René Borst,et al.  On the numerical integration of interface elements , 1993 .

[69]  Ares J. Rosakis,et al.  Three Dimensional Cohesive-Element Analysis and Experiments of Dynamic Fracture in C300 Steel , 2000 .

[70]  Gregory Steven Payette,et al.  Spectral/hp Finite Element Models for Fluids and Structures , 2012 .

[71]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[72]  M. A. Crisfield,et al.  Progressive Delamination Using Interface Elements , 1998 .

[73]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[74]  Ernst Rank,et al.  Normal contact with high order finite elements and a fictitious contact material , 2015, Comput. Math. Appl..

[75]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[76]  Ernst Rank,et al.  Finite cell method , 2007 .

[77]  P. Geubelle,et al.  Impact-induced delamination of composites: A 2D simulation , 1998 .

[78]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[79]  K. Bathe Finite Element Procedures , 1995 .

[80]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[81]  Stephen R Hallett,et al.  Cohesive zone length in numerical simulations of composite delamination , 2008 .

[82]  I. Babuska,et al.  The $h{\text{ - }}p$ Version of the Finite Element Method for Domains with Curved Boundaries , 1988 .

[83]  Marcus Sarkis,et al.  Higher-order finite element methods for elliptic problems with interfaces , 2015, 1505.04347.

[84]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[85]  Ted Belytschko,et al.  The spectral overlay on finite elements for problems with high gradients , 1990 .

[86]  René de Borst,et al.  Computational modelling of delamination , 2006 .

[87]  J. Fish The s-version of the finite element method , 1992 .

[88]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[89]  Ernst Rank,et al.  Applying the hp–d version of the FEM to locally enhance dimensionally reduced models , 2007 .

[90]  Pavel Solin,et al.  Space-time adaptive $$hp$$-FEM for problems with traveling sharp fronts , 2013, Computing.

[91]  E. Rank Adaptive remeshing and h-p domain decomposition , 1992 .

[92]  Amir R. Khoei,et al.  Three-dimensional cohesive fracture modeling of non-planar crack growth using adaptive FE technique , 2012 .

[93]  Ted Belytschko,et al.  A finite element with a unidirectionally enriched strain field for localization analysis , 1990 .

[94]  van Jaw Hans Dommelen,et al.  A self-adaptive finite element approach for simulation of mixed-mode delamination using cohesive zone models , 2011 .

[95]  D. Borst,et al.  A NON-LINEAR FINITE ELEMENT APPROACH FOR THE ANALYSIS OF MODE-I FREE EDGE DELAMINATION IN COMPOSITES , 1993 .

[96]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[97]  Dominik Schillinger,et al.  The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models , 2015 .

[98]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[99]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[100]  Qingda Yang,et al.  Cohesive models for damage evolution in laminated composites , 2005 .

[101]  Y. Bazilevs,et al.  Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .

[102]  E. Rank,et al.  A multiscale finite-element method , 1997 .

[103]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[104]  T. Belytschko,et al.  A finite element with embedded localization zones , 1988 .

[105]  Ernst Rank,et al.  Efficient and accurate numerical quadrature for immersed boundary methods , 2015, Advanced Modeling and Simulation in Engineering Sciences.

[106]  Cv Clemens Verhoosel,et al.  Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone , 2015 .

[107]  Giulio Alfano,et al.  Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model , 2002 .

[108]  G.A.O. Davies,et al.  Decohesion finite element with enriched basis functions for delamination , 2009 .

[109]  M. Ainsworth,et al.  Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .

[110]  Ernst Rank,et al.  Shell Finite Cell Method: A high order fictitious domain approach for thin-walled structures , 2011 .

[111]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[112]  Ted Belytschko,et al.  Elements with embedded localization zones for large deformation problems , 1988 .

[113]  Ernst Rank,et al.  The multi-level hp-method for three-dimensional problems: Dynamically changing high-order mesh refinement with arbitrary hanging nodes , 2016 .