Intrinsic coherence time of trions in monolayer MoSe 2 measured via two-dimensional coherent spectroscopy

[1]  K. B. Whaley,et al.  Using coherence to enhance function in chemical and biophysical systems , 2017, Nature.

[2]  T. Autry,et al.  Analytical solutions to the finite-pulse Bloch model for multidimensional coherent spectroscopy , 2017 .

[3]  J. Hauer,et al.  Finite pulse effects in single and double quantum spectroscopies , 2017 .

[4]  A. MacDonald,et al.  Trion valley coherence in monolayer semiconductors , 2016, 2d materials.

[5]  Judith F. Specht,et al.  Neutral and charged inter-valley biexcitons in monolayer MoSe2 , 2016, Nature Communications.

[6]  Tony F. Heinz,et al.  Optical manipulation of valley pseudospin , 2016, Nature Physics.

[7]  A. Knorr,et al.  Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides , 2016, Nature Communications.

[8]  Hebin Li,et al.  Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy. , 2016, Optics letters.

[9]  Tobias Korn,et al.  Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2. , 2016, Nano letters.

[10]  P. Ajayan,et al.  Valley trion dynamics in monolayer MoSe 2 , 2016, 1604.04190.

[11]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[12]  Aaron M. Jones,et al.  Excitonic luminescence upconversion in a two-dimensional semiconductor , 2015, Nature Physics.

[13]  D J Hilton,et al.  Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions. , 2016, Physical review letters.

[14]  Galan Moody,et al.  Exciton Dynamics in Monolayer Transition Metal Dichalcogenides. , 2016, Journal of the Optical Society of America. B, Optical physics.

[15]  Fengcheng Wu,et al.  Direct measurement of exciton valley coherence in monolayer WSe2 , 2016 .

[16]  Marten Richter,et al.  Trion formation dynamics in monolayer transition metal dichalcogenides , 2015, 1507.04463.

[17]  Andreas Knorr,et al.  Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides , 2015, Nature Communications.

[18]  F. Rana,et al.  Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. , 2014, Nano letters.

[19]  E. Reed,et al.  Ultrafast electronic and structural response of monolayer MoS2 under intense photoexcitation conditions. , 2014, ACS nano.

[20]  K. W. Kim,et al.  Exciton valley relaxation in a single layer of WS 2 measured by ultrafast spectroscopy , 2014 .

[21]  J. Kong,et al.  Trion-induced negative photoconductivity in monolayer MoS2. , 2014, Physical review letters.

[22]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[23]  P. Ajayan,et al.  Chemical vapor deposition growth of crystalline monolayer MoSe2. , 2014, ACS nano.

[24]  G Karczewski,et al.  Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well. , 2014, Physical review letters.

[25]  A. Balocchi,et al.  Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 , 2014, 1402.6009.

[26]  David G. Mandrus,et al.  Coherent Electronic Coupling in Atomically Thin MoSe 2 , 2014, 1401.2909.

[27]  Linyou Cao,et al.  Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. , 2014, Nano letters.

[28]  Galan Moody,et al.  Coherent excitonic coupling in an asymmetric double InGaAs quantum well arises from many-body effects. , 2013, Physical review letters.

[29]  P. Tan,et al.  Carrier and polarization dynamics in monolayer MoS2. , 2013, Physical review letters.

[30]  Ji Feng,et al.  Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy. , 2013, ACS nano.

[31]  Klaus Pierz,et al.  Anisotropic homogeneous linewidth of the heavy-hole exciton in (110)-oriented GaAs quantum wells , 2013 .

[32]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[33]  Hebin Li,et al.  Reflection optical two-dimensional Fourier-transform spectroscopy. , 2013, Optics express.

[34]  D. Gammon,et al.  Influence of confinement on biexciton binding in semiconductor quantum dot ensembles measured with two-dimensional spectroscopy , 2013 .

[35]  Huili Grace Xing,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[36]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[37]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[38]  M. Bayer,et al.  Fifth-order nonlinear optical response of excitonic states in an InAs quantum dot ensemble measured with two-dimensional spectroscopy , 2012, 1210.8096.

[39]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[40]  Galan Moody,et al.  Persistent exciton-type many-body interactions in GaAs quantum wells measured using two-dimensional optical spectroscopy , 2012 .

[41]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[42]  Marten Richter,et al.  Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. , 2012, Physical review letters.

[43]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[44]  S. T. Cundiff,et al.  A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy. , 2009, The Review of scientific instruments.

[45]  Galan Moody,et al.  Resonance lineshapes in two-dimensional Fourier transform spectroscopy. , 2010, Optics express.

[46]  R Jimenez,et al.  A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy. , 2009, The Review of scientific instruments.

[47]  Wang Yao,et al.  Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.

[48]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[49]  M. Shayegan,et al.  Valley polarization and susceptibility of composite fermions around a filling factor nu=3/2. , 2007, Physical review letters.

[50]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[51]  C. W. J. Beenakker,et al.  Valley filter and valley valve in graphene , 2007 .

[52]  O. Gunawan,et al.  Quantized conductance in an AlAs two-dimensional electron system quantum point contact , 2006, cond-mat/0606272.

[53]  J. Semmlow,et al.  Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode. , 2005, Optics express.

[54]  Graham R. Fleming,et al.  Two-dimensional spectroscopy of electronic couplings in photosynthesis , 2005, Nature.

[55]  M. Shayegan,et al.  Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. , 2002, Physical review letters.

[56]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[57]  J. Hvam,et al.  COHERENT OPTICAL NONLINEARITIES AND PHASE RELAXATION OF QUASI-THREE-DIMENSIONAL AND QUASI-TWO-DIMENSIONAL EXCITONS IN ZNSXSE1-X/ZNSE STRUCTURES , 1997 .

[58]  Cox,et al.  Observation of negatively charged excitons X- in semiconductor quantum wells. , 1993, Physical review letters.

[59]  Binder,et al.  Transient nonlinear optical response from excitation induced dephasing in GaAs. , 1993, Physical review letters.

[60]  Tu,et al.  Collision broadening of two-dimensional excitons in a GaAs single quantum well. , 1989, Physical review. B, Condensed matter.

[61]  M. Lampert Mobile and Immobile Effective-Mass-Particle Complexes in Nonmetallic Solids , 1958 .