Broadly tunable deep blue laser based on a star-shaped oligofluorene truxene

We report amplified spontaneous emission (ASE) and optically pumped deep-blue-emitting distributed feedback (DFB) lasers based on a star-shaped oligofluorene truxene molecule. A low ASE threshold of 2.1 kW/cm2 at 439 nm was achieved. The material exhibits a high net gain of 38 cm−1 and also low optical loss coefficient of 3.5 cm−1. Second-order DFB lasers show tuning of the emission wavelength from 422 to 473 nm, and a minimum threshold density of 515 W/cm2. This is the broadest tuning range (51 nm) reported for organic deep-blue/blue lasing materials.

[1]  R. H. Friend,et al.  Lasing from conjugated-polymer microcavities , 1996, Nature.

[2]  A. Saxena,et al.  Interchain Electronic Excitations in Poly(phenylenevinylene) (PPV) Aggregates , 2000 .

[3]  Martin Fally,et al.  LASERS, OPTICS, AND OPTOELECTRONICS (PACS 42) 6959 Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium , 2004 .

[4]  Wolfgang Kowalsky,et al.  Laser threshold reduction in an all-spiro guest-host system , 2004 .

[5]  S. Forrest,et al.  Laser action in organic semiconductor waveguide and double-heterostructure devices , 1997, Nature.

[6]  Thomas F. Krauss,et al.  Tuneable distributed feedback lasing in MEH-PPV films , 2001 .

[7]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[8]  D. Bradley,et al.  Characterization of a high-thermal-stability spiroanthracenefluorene-based blue-light-emitting polymer optical gain medium , 2005 .

[9]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[10]  Graham A. Turnbull,et al.  Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode , 2008 .

[11]  M. Koeberg,et al.  Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: highly fluorescent star-shaped architectures. , 2004, Journal of the American Chemical Society.

[12]  A. Heeger,et al.  Characterization of semiconducting polymer laser materials and the prospects for diode lasers , 1999 .

[13]  A. Heeger,et al.  Water-soluble conjugated oligomers: effect of chain length and aggregation on photoluminescence-quenching efficiencies. , 2001, Journal of the American Chemical Society.

[14]  Ifor D. W. Samuel,et al.  Organic semiconductor lasers. , 2007 .

[15]  Piers Andrew,et al.  Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One‐ and Two‐Dimensional Distributed Feedback , 2004 .

[16]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[17]  Daniel Moses,et al.  High quantum efficiency luminescence from a conducting polymer in solution: A novel polymer laser dye , 1992 .

[18]  Wolfgang Kowalsky,et al.  Deep blue widely tunable organic solid-state laser based on a spirobifluorene derivative , 2004 .

[19]  Paul E. Shaw,et al.  Low-threshold organic laser based on an oligofluorene truxene with low optical losses , 2009 .

[20]  Donal D. C. Bradley,et al.  Fluorene-based conjugated polymer optical gain media , 2003 .

[21]  Donal D. C. Bradley,et al.  Enhanced Solid‐State Luminescence and Low‐Threshold Lasing from Starburst Macromolecular Materials , 2009 .

[22]  A. Gombert,et al.  Very compact tunable solid-state laser utilizing a thin-film organic semiconductor. , 2001, Optics letters.

[23]  A. Echavarren,et al.  Synthesis of New C3h and C3v Truxene Derivatives , 2001 .

[24]  Ifor D. W. Samuel,et al.  Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers , 1995 .

[25]  Donal D. C. Bradley,et al.  Light amplification and gain in polyfluorene waveguides , 2002 .

[26]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[27]  Alan J. Heeger,et al.  Semiconducting (Conjugated) Polymers as Materials for Solid‐State Lasers , 2000 .

[28]  E. Namdas,et al.  How to recognize lasing , 2009 .