Formal Models of the OSPF Routing Protocol

We present three formal models of the OSPF routing protocol. The first two are formalised in the timed process algebra T-AWN, which is not only tailored to routing protocols, but also specifies protocols in pseudo-code that is easily readable. The difference between the two models lies in the level of detail (level of abstraction). From the more abstract model we then generate the third model. It is based on networks of timed automata and can be executed in the model checker Uppaal.

[1]  K. V. S. Prasad A Calculus of Broadcasting Systems , 1991, Sci. Comput. Program..

[2]  Fatemeh Ghassemi,et al.  Restricted Broadcast Process Theory , 2008, 2008 Sixth IEEE International Conference on Software Engineering and Formal Methods.

[3]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[4]  Kim G. Larsen,et al.  A Tutorial on Uppaal , 2004, SFM.

[5]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[6]  Rob J. van Glabbeek,et al.  Split, Send, Reassemble: A Formal Specification of a CAN Bus Protocol Stack , 2017, MARS@ETAPS.

[7]  Annabelle McIver,et al.  Automated Analysis of AODV Using UPPAAL , 2012, TACAS.

[8]  Jan A. Bergstra,et al.  Algebra of Communicating Processes , 1995, Workshops in Computing.

[9]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[10]  Deborah Estrin,et al.  Persistent route oscillations in inter-domain routing , 2000, Comput. Networks.

[11]  Traian Muntean,et al.  A broadcast-based calculus for communicating systems , 2001, Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001.

[12]  Chris Hankin,et al.  A framework for security analysis of mobile wireless networks , 2006, Theor. Comput. Sci..

[13]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[14]  Daniel Kroening,et al.  A Tool for Checking ANSI-C Programs , 2004, TACAS.

[15]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[16]  Jens Chr. Godskesen A Calculus for Mobile Ad Hoc Networks , 2007, COORDINATION.

[17]  Rob J. van Glabbeek,et al.  Sequence numbers do not guarantee loop freedom: AODV can yield routing loops , 2013, MSWiM.

[18]  Massimo Merro,et al.  An Observational Theory for Mobile Ad Hoc Networks (full version) , 2009, Inf. Comput..

[19]  T.R. Henderson,et al.  CORE: A real-time network emulator , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[20]  Davide Sangiorgi,et al.  Towards a Calculus For Wireless Systems , 2006, MFPS.

[21]  C. R. Ramakrishnan,et al.  A process calculus for Mobile Ad Hoc Networks , 2010, Sci. Comput. Program..

[22]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[23]  Jens Chr. Godskesen Observables for Mobile and Wireless Broadcasting Systems , 2010, COORDINATION.

[24]  L. R. Ford,et al.  NETWORK FLOW THEORY , 1956 .

[25]  Rob J. van Glabbeek,et al.  A Timed Process Algebra for Wireless Networks with an Application in Routing - (Extended Abstract) , 2016, ESOP.

[26]  Annabelle McIver,et al.  A Process Algebra for Wireless Mesh Networks , 2012, ESOP.

[27]  Edward W. Knightly,et al.  Routing Primitives for Wireless Mesh Networks: Design, Analysis and Experiments , 2010, 2010 Proceedings IEEE INFOCOM.

[28]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[29]  Rob J. van Glabbeek,et al.  Modelling and verifying the AODV routing protocol , 2015, Distributed Computing.

[30]  Gabi Nakibly,et al.  OSPF vulnerability to persistent poisoning attacks: a systematic analysis , 2014, ACSAC '14.

[31]  Annabelle McIver,et al.  A Process Algebra for Wireless Mesh Networks used for Modelling, Verifying and Analysing AODV , 2013, ArXiv.

[32]  Björn Victor,et al.  Broadcast Psi-calculi with an Application to Wireless Protocols , 2011, SEFM.