Lyapunov functions for fractional order h-difference systems

This paper presents some new propositions related to the fractional order h-difference operators, for the case of general quadratic forms and for the polynomial type, which allow proving the stability of fractional order h-difference systems, by means of the discrete fractional Lyapunov direct method, using general quadratic Lyapunov functions, and polynomial Lyapunov functions of any positive integer order, respectively. Some examples are given to illustrate these results.

[1]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[2]  S. Polidoro,et al.  Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term , 2008 .

[3]  Dumitru Baleanu,et al.  Stability analysis of Caputo-like discrete fractional systems , 2017, Commun. Nonlinear Sci. Numer. Simul..

[4]  Ewa Girejko,et al.  Comparison of h-Difference Fractional Operators , 2013, RRNR.

[5]  D. Baleanu,et al.  On the Stability of Some Discrete Fractional Nonautonomous Systems , 2012 .

[6]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[7]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[8]  Paul W. Eloe,et al.  Two-point boundary value problems for finite fractional difference equations , 2011 .

[9]  Jerzy Baranowski,et al.  Applications of Direct Lyapunov Method in Caputo Non-Integer Order Systems , 2015 .

[10]  Q. Ma,et al.  Dynamical behaviors in a discrete fractional-order predator-prey system , 2018 .

[11]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[12]  A. Peterson,et al.  Discrete Fractional Calculus , 2016 .

[13]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[14]  Christopher S. Goodrich,et al.  Some new existence results for fractional difference equations , 2011 .

[15]  Manuel A. Duarte-Mermoud,et al.  Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[16]  Manuel A. Duarte-Mermoud,et al.  Lyapunov functions for fractional order systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[17]  D. Matignon Stability properties for generalized fractional differential systems , 1998 .

[18]  Feifei Du,et al.  The solution of a new Caputo-like fractional $h$-difference equation , 2018, Rocky Mountain Journal of Mathematics.

[19]  A. Peterson,et al.  Stability analysis for a class of nabla (q; h)-fractional difference equations , 2019, TURKISH JOURNAL OF MATHEMATICS.

[20]  Tadeusz Kaczorek,et al.  Selected Problems of Fractional Systems Theory , 2011 .

[21]  J. Jonnalagadda Solutions of Perturbed Linear Nabla Fractional Difference Equations , 2014 .

[22]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[23]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[24]  E. Girejko,et al.  Overview of fractional h-difference operators , 2013 .

[25]  Wei Jiang,et al.  Stability criterion for a class of nonlinear fractional differential systems , 2014, Appl. Math. Lett..

[26]  Dumitru Baleanu,et al.  Lyapunov functions for Riemann-Liouville-like fractional difference equations , 2017, Appl. Math. Comput..

[27]  Guillermo Fernández-Anaya,et al.  Lyapunov functions for a class of nonlinear systems using Caputo derivative , 2017, Commun. Nonlinear Sci. Numer. Simul..

[28]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[29]  Dorota Mozyrska,et al.  On Mittag-Leffler Stability of Fractional Order Difference Systems , 2014, RRNR.

[30]  Ewa Girejko,et al.  Stability of nonlinear h-difference systems with n fractional orders , 2015, Kybernetika.

[31]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[32]  Christopher S. Goodrich,et al.  Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions , 2011, Comput. Math. Appl..

[33]  Dorota Mozyrska,et al.  The -Transform Method and Delta Type Fractional Difference Operators , 2015 .