Generalized quantum efficiency analysis for non-ideal solar cells: Case of Cu2ZnSnSe4

Detailed quantum efficiency (QE) analysis of a nanoparticle-based Cu2ZnSnSe4 (CZTSe) solar cell has been conducted to understand photogenerated carrier collection in the device. Specifically, voltage-dependent analysis has been considered to characterize both diffusion limitations and recombination limitations to carrier collection. Application of a generalized QE model and corresponding experimental and analytical procedures are presented to account for non-ideal device behavior, with specific consideration of photogenerated charge trapping, finite absorber thickness, back-surface recombination, and recombination of photogenerated carriers via interface, space-charge-region limited, and/or band tail limited recombination mechanisms. Analysis of diffusion limited collection results in extraction of the minority carrier diffusion length, mobility, back surface recombination velocity, and absorption coefficient. Additionally, forward bias QE measurements afford analysis of the dominant recombination mechanism for photogenerated carriers. For the analyzed CZTSe device, diffusion limitations are not expected to play a significant role in carrier collection in forward bias. However, voltage-dependent carrier collection, previously identified to contribute to open-circuit voltage limitations, is attributed to high recombination rates via band tail states/potential fluctuations in forward bias. A consideration of the assumptions commonly applied to diffusion length, band gap, and band tail extraction is also discussed.

[1]  Yang Yang,et al.  Growth mechanisms of co‐evaporated kesterite: a comparison of Cu‐rich and Zn‐rich composition paths , 2014 .

[2]  Zhongquan Ma,et al.  Internal quantum efficiency for solar cells , 2008 .

[3]  J. Y. Kim,et al.  Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route , 2013, Scientific Reports.

[4]  J. Sites,et al.  Apparent quantum efficiency effects in CdTe solar cells , 2004 .

[5]  Thomas Kirchartz,et al.  Recombination via tail states in polythiophene:fullerene solar cells , 2011 .

[6]  R. D. Tomlinson,et al.  Relation between electrical properties and composition in CuInSe2 single crystals , 1990 .

[7]  Tayfun Gokmen,et al.  Solution‐processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell , 2013 .

[8]  I. Repins,et al.  Long lifetimes in high-efficiency Cu(In,Ga)Se2 solar cells , 2008 .

[9]  T. Unold,et al.  Free-to-bound recombination in near stoichiometric Cu 2 ZnSnS 4 single crystals , 2012 .

[10]  D. Abou‐Ras,et al.  Improved performance of Ge‐alloyed CZTGeSSe thin‐film solar cells through control of elemental losses , 2015 .

[11]  J. Sites,et al.  Solar-cell collection efficiency and its variation with voltage , 1994 .

[12]  Eugene Bykov,et al.  Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current , 2010 .

[13]  E. L. Burgess,et al.  Application of the superposition principle to solar-cell analysis , 1979, IEEE Transactions on Electron Devices.

[14]  T. Tiedje,et al.  Band tail recombination limit to the output voltage of amorphous silicon solar cells , 1982 .

[15]  J. Sites,et al.  Explanation of Light/Dark Superposition Failure in CIGS Solar Cells , 2003 .

[16]  Thomas Kirchartz,et al.  Electroluminescence analysis of high efficiency Cu(In,Ga)Se2 solar cells , 2007 .

[17]  U. Rau,et al.  Fundamental Electrical Characterization of Thin‐Film Solar Cells , 2011 .

[18]  J. Yun,et al.  Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values , 2010 .

[19]  K. Misiakos,et al.  Analytical and numerical modeling of amorphous silicon p‐i‐n solar cells , 1988 .

[20]  S. Hegedus Current–Voltage Analysis of a-Si and a-SiGe Solar Cells Including Voltage-dependent Photocurrent Collection , 1997 .

[21]  C. Persson Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 , 2010 .

[22]  Tayfun Gokmen,et al.  Photoluminescence characterization of a high-efficiency Cu2ZnSnS4 device , 2013 .

[23]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[24]  R. Agrawal,et al.  Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying , 2016 .

[25]  Z. Y. Xue,et al.  Photoluminescence of ZnO films excited with light of different wavelength , 2003 .

[26]  I. Forbes,et al.  New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material , 2008 .

[27]  Rommel Noufi,et al.  Recombination kinetics and stability in polycrystalline Cu(In,Ga)Se2 solar cells , 2009 .

[28]  Temperature-dependent quantum efficiency analysis of recombination centers in silicon thin-film solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[29]  Mark S. Lundstrom,et al.  The Frozen Potential Approach to Separate the Photocurrent and Diode Injection Current in Solar Cells , 2015, IEEE Journal of Photovoltaics.

[30]  A. Rothwarf,et al.  Effects of a voltage‐dependent light‐generated current on solar cell measurements: CuInSe2/Cd(Zn)S , 1984 .

[31]  Richard K. Ahrenkiel,et al.  Chapter 2 Minority-Carrier Lifetime in III–V Semiconductors , 1993 .

[32]  D. Mitzi,et al.  Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells , 2014 .

[33]  J. Phillips,et al.  Resistive and photoconductive effects in spectral response measurements , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[34]  K. Durose,et al.  Luminescence of Cu2ZnSnS4 polycrystals described by the fluctuating potential model , 2013 .

[35]  J. Parisi,et al.  Light induced changes in the electrical behavior of CdTe and Cu(In,Ga)Se2 solar cells , 2002 .

[36]  Uwe Rau,et al.  Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges , 1999 .

[37]  James C. Blakesley,et al.  Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells , 2011 .

[38]  R. Crandall Modeling of thin film solar cells: Uniform field approximation , 1983 .

[39]  R. Miles,et al.  Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors , 2009 .

[40]  K. Choudhury,et al.  Studies of the fine-grain sub-layer in the printed CZTSSe photovoltaic devices , 2014 .

[41]  D. Mitzi,et al.  Electronic properties of the Cu2ZnSn(Se,S)4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods , 2012 .

[42]  N. G. Tassi,et al.  Optoelectronic characteristics of >9% efficient bilayered CuZnSn(S,Se)4 photovoltaic device , 2015 .

[43]  H. Gómez,et al.  Grain size dependence of the bandgap in chemical bath deposited CdS thin films , 2004 .

[44]  Rakesh Agrawal,et al.  Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1−x)4 and Cu2Zn(SnyGe1−y)(SxSe1−x)4 , 2014 .

[45]  S. Hegedus,et al.  Voltage dependent photocurrent collection in CdTe/CdS solar cells , 2007 .

[46]  W. Shafarman,et al.  Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling , 2004 .

[47]  P. Zabierowski,et al.  Capacitance Spectroscopy of Thin‐Film Solar Cells , 2011 .

[48]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[49]  M. Buffiere,et al.  Investigation of Properties Limiting Efficiency in Cu2ZnSnSe4-Based Solar Cells , 2015, IEEE Journal of Photovoltaics.

[50]  Marc Meuris,et al.  Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells , 2013 .

[51]  Rakesh Agrawal,et al.  9.0% efficient Cu2ZnSn(S,Se)4 solar cells from selenized nanoparticle inks , 2015 .

[52]  K. Taretto,et al.  Analysis of internal quantum efficiency in double-graded bandgap solar cells including sub-bandgap absorption , 2011 .

[53]  D. Mitzi,et al.  Minority carrier diffusion length extraction in Cu2ZnSn(Se,S)4 solar cells , 2013 .

[54]  Mark S. Lundstrom,et al.  Device comparison of champion nanocrystal-ink based CZTSSe and CIGSSe solar cells: Capacitance spectroscopy , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[55]  J. Sites,et al.  Analysis of apparent quantum efficiency , 1990 .

[56]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[57]  S. Nishiwaki,et al.  Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells , 2001 .

[58]  O. Gunawan,et al.  Cu2ZnSnSe4 Thin‐Film Solar Cells by Thermal Co‐evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length , 2015 .

[59]  R. Scheer,et al.  Thin Film Material Properties , 2011 .

[60]  Mowafak Al-Jassim,et al.  Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications , 2011 .

[61]  T. Raadik,et al.  Photoluminescence and Raman study of Cu2ZnSn(SexS1 − x)4 monograins for photovoltaic applications , 2011 .

[62]  D. Mitzi,et al.  Prospects and performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  N. G. Tarr,et al.  The superposition principle for homojunction solar cells , 1980, IEEE Transactions on Electron Devices.

[64]  Tayfun Gokmen,et al.  Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .

[65]  Stephen J. Fonash,et al.  Influence of illumination conditions on the spectral response of hydrogenated amorphous silicon Schottky barrier structures , 1990 .

[66]  Suhuai Wei,et al.  Indications of short minority-carrier lifetime in kesterite solar cells , 2013 .

[67]  C. Westgate,et al.  Characterization of a CZTS thin film solar cell grown by sputtering method , 2014 .

[68]  K. Taretto,et al.  Temperature-dependent quantum efficiency analysis of graded-gap Cu(In,Ga)Se2 solar cells , 2011 .