Piezoelectric and ferroelectric property in Mn-doped 0.69BiFeO3–0.04Bi(Zn1/2Ti1/2)O3–0.27BaTiO3 lead-free piezoceramics

In this article, rhombohedral 0.69BiFeO3–0.04Bi(Zn1/2Ti1/2)O3–0.27BaTiO3 (BF69–BZT4–BT27) lead-free piezoceramics were studied for the sake of obtaining high Curie point and piezoresponse. In compositional engineering approach, A-site vacancies with various concentrations were introduced in advance into ferroelectric ceramics by using low purities of raw oxides and doping MnO2. In contrast to lossy BF–BT ceramics, very low dielectric loss tanδ ~ 0.03 was obtained in the BF69–BZT4–BT27 ceramics through adding BZT third member to stabilize perovskite phase and doping MnO2 to reduce oxygen vacancies with a refined solid state reaction electroceramic processing. A good combination of ferroelectric and piezoelectric property was obtained in the 0.17 wt% MnO2-doped BF69–BZT4–BT27 coarse-grained ceramics with remanent polarization of Pr = 32.3 μC/cm2, piezoelectric constant of d33 = 145 pC/N, thickness electromechanical coupling coefficient of kt = 0.41 and Curie temperature of TC = 510 °C. The intrinsic piezoelectric response was observed in correlation with ferroelectric polarization switching power described by dielectric constant, which is affected by some extrinsic factors such as point defects, microstructure grain size, and residual internal stresses. Excellent thermal aging stability of piezoelectric constant d33 were also experimentally demonstrated and argued resulting from the higher TC and no ferroelectric–ferroelectric structural phase transition below TC of BF–BZT–BT system.

[1]  Shashank Priya,et al.  Room-temperature magnetoelectric coupling in single-phase BaTiO3-BiFeO3 system , 2013 .

[2]  J. Chu,et al.  Progress and prospect for high temperature single-phased magnetic ferroelectrics , 2008 .

[3]  W. J. Merz Piezoelectric Ceramics , 1972, Nature.

[4]  Yueming Li,et al.  Structure and energy storage properties of Ti vacancies charge compensated Re2O3-doped SrTiO3 (Re = Pr, Nd, Gd) ceramics , 2013, Journal of Materials Science: Materials in Electronics.

[5]  Shen,et al.  Size-related ferroelectric-domain-structure transition in a polycrystalline PbTiO3 thin film. , 1996, Physical review. B, Condensed matter.

[6]  J. Yu,et al.  Ferroelectric and piezoelectric properties of high temperature perovskite-type 0.69BiFeO3–0.02Bi(Mg1/2Ti1/2)O3–0.29BaTiO3 ceramics , 2014, Journal of Materials Science: Materials in Electronics.

[7]  Tadashi Takenaka,et al.  (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics , 1991 .

[8]  Jian Yu,et al.  Residual tensile stress in robust insulating rhombohedral Bi1−xLaxFe1−yTiyO3 multiferroic ceramics and its ability to pin ferroelectric polarization switching , 2015 .

[9]  G. Bradfield Ultrasonic transducer materials: Edited by O. E. Mattiat. Contributors: Chapter 1—Yoshimutsu Kikuchi; Chapter 2—Don Berlincourt; Chapter 3—A. H. Meitzler. New York: Plenum Press. 185 pp. 86 Figures. 20 Tables. Price $14.00 , 1972 .

[10]  Jian Yu,et al.  Structural phase transitions of robust insulating Bi1-xLaxFe1-yTiyO3 multiferroics , 2014 .

[11]  D. Xue,et al.  A modified lead-free piezoelectric BZT–xBCT system with higher TC , 2010 .

[12]  Jacob L. Jones,et al.  BiFeO3 Ceramics: Processing, Electrical, and Electromechanical Properties , 2014 .

[13]  C. Randall,et al.  New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O_3-PbTiO_3 Ceramics : Electrical Properties of Condensed Matter , 2001 .

[14]  Thomas R. Shrout,et al.  New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3–PbTiO3 Ceramics , 2001 .

[15]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[16]  K. Lam,et al.  Structure, Ferroelectric, Piezoelectric, and Ferromagnetic Properties of BiFeO3‐BaTiO3‐Bi0.5Na0.5TiO3 Lead‐Free Multiferroic Ceramics , 2014 .

[17]  Don Berlincourt,et al.  Piezoelectric Crystals and Ceramics , 1971 .

[18]  T. Iijima,et al.  Piezoelectric properties of high Curie temperature barium titanate-bismuth perovskite-type oxide system ceramics , 2010 .

[19]  Dunmin Lin,et al.  Microstructure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 lead-free multiferroic ceramics , 2014, Journal of Materials Science: Materials in Electronics.

[20]  Joris Mercelis,et al.  History and Technology , 2017 .

[21]  S. Alpay,et al.  Imprint in ferroelectric materials due to space charges: A theoretical analysis , 2009 .

[22]  A. Bell,et al.  Investigation of high Curie temperature (1−x)BiSc1−yFeyO3–xPbTiO3 piezoelectric ceramics , 2009 .

[23]  Yongxing Wei,et al.  Dielectric, Ferroelectric, and Piezoelectric Properties of BiFeO3–BaTiO3 Ceramics , 2013 .

[24]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[25]  Jian Yu,et al.  Ferroelectric and piezoelectric properties of high temperature (Bi,La)FeO3–Bi(Zn1/2Ti1/2)O3–PbTiO3 ceramics at rhombohedral/tetragonal coexistent phase , 2015 .

[26]  Y. Sakka,et al.  Coexistence of A- and B-Site Vacancy Compensation in La-Doped Sr1-xBaxTiO3 , 2010 .

[27]  Jian Yu,et al.  Perovskite-Structured BiFeO3–Bi(Zn1/2Ti1/2)O3–PbTiO3 Solid Solution Piezoelectric Ceramics with Curie Temperature About 700°C , 2013 .

[28]  U. Balachandran,et al.  Self-compensation in lanthanum-doped strontium titanate , 1981 .

[29]  L. E. Cross,et al.  A monoclinic ferroelectric phase transition in the Pb(Zr1-xTix)O3 solid solution , 1999, cond-mat/9903007.

[30]  Richard E Eitel,et al.  Progress in engineering high strain lead-free piezoelectric ceramics , 2010, Science and technology of advanced materials.

[31]  Huabin Yang,et al.  Bi(Zn1/2Ti1/2)O3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics with high temperature stability , 2013 .

[32]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[33]  一ノ瀬晃,et al.  (Bi 1/2 Na 1/2 )TiO 3 系セラミックスの電気的,機械的特性 , 1991 .

[34]  Mahesh Kumar,et al.  Structure property relations in BiFeO3/BaTiO3 solid solutions , 2000 .

[35]  A. Tagantsev,et al.  Equilibrium states and phase transitions in epitaxial ferroelectric thin films , 1999 .

[36]  H. Hsiang,et al.  Effect of crystallite size on the ferroelectric domain growth of ultrafine BaTiO3 powders , 1996 .

[37]  Farhad Nili,et al.  Theoretical Analysis , 2017, Encyclopedia of GIS.

[38]  H. Haertling,et al.  Ferroelectric Ceramics : History and Technology Gene , 1999 .

[39]  Takayuki Watanabe,et al.  Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3Ceramics , 2011 .

[40]  C. Randall,et al.  Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics , 2005 .

[41]  Thomas R. Shrout,et al.  Lead-free piezoelectric ceramics: Alternatives for PZT? , 2007, Progress in Advanced Dielectrics.

[42]  Richard E. Eitel,et al.  Dielectric and Piezoelectric Properties in Mn‐Modified (1−x)BiFeO3–xBaTiO3 Ceramics , 2009 .

[43]  M. Zhang,et al.  Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free solid solution , 2014 .

[44]  Hyoung-Su Han,et al.  Lead-free piezoceramics – Where to move on? , 2016 .

[45]  T. Kamel Grain size effect on the poling of soft Pb(Zr,Ti)O3 ferroelectric ceramics , 2008 .